Prior to this CL whenever the GC marking was enabled and
a P was looking for work we supplied a G to help
the GC do its marking tasks. Once this G finished all
the marking available it would release the P to find another
available G. In the case where there was no work the P would drop
into findrunnable which would execute the mark helper G which would
immediately return and the P would drop into findrunnable again repeating
the process. Since the P was always given a G to run it never blocks.
This CL first checks if the GC mark helper G has available work and if
not the P immediately falls through to its blocking logic.
Fixes#10901
Change-Id: I94ac9646866ba64b7892af358888bc9950de23b5
Reviewed-on: https://go-review.googlesource.com/10189
Reviewed-by: Austin Clements <austin@google.com>
Currently, forEachP reuses the stopwait and stopnote fields from
stopTheWorld to track how many Ps have not responded to the safe-point
request and to sleep until all Ps have responded.
It was assumed this was safe because both stopTheWorld and forEachP
must occur under the worlsema and hence stopwait and stopnote cannot
be used for both purposes simultaneously and callers could always
determine the appropriate use based on sched.gcwaiting (which is only
set by stopTheWorld). However, this is not the case, since it's
possible for there to be a window between when an M observes that
gcwaiting is set and when it checks stopwait during which stopwait
could have changed meanings. When this happens, the M decrements
stopwait and may wakeup stopnote, but does not otherwise participate
in the forEachP protocol. As a result, stopwait is decremented too
many times, so it may reach zero before all Ps have run the safe-point
function, causing forEachP to wake up early. It will then either
observe that some P has not run the safe-point function and panic with
"P did not run fn", or the remaining P (or Ps) will run the safe-point
function before it wakes up and it will observe that stopwait is
negative and panic with "not stopped".
Fix this problem by giving forEachP its own safePointWait and
safePointNote fields.
One known sequence of events that can cause this race is as
follows. It involves three actors:
G1 is running on M1 on P1. P1 has an empty run queue.
G2/M2 is in a blocked syscall and has lost its P. (The details of this
don't matter, it just needs to be in a position where it needs to grab
an idle P.)
GC just started on G3/M3/P3. (These aren't very involved, they just
have to be separate from the other G's, M's, and P's.)
1. GC calls stopTheWorld(), which sets sched.gcwaiting to 1.
Now G1/M1 begins to enter a syscall:
2. G1/M1 invokes reentersyscall, which sets the P1's status to
_Psyscall.
3. G1/M1's reentersyscall observes gcwaiting != 0 and calls
entersyscall_gcwait.
4. G1/M1's entersyscall_gcwait blocks acquiring sched.lock.
Back on GC:
5. stopTheWorld cas's P1's status to _Pgcstop, does other stuff, and
returns.
6. GC does stuff and then calls startTheWorld().
7. startTheWorld() calls procresize(), which sets P1's status to
_Pidle and puts P1 on the idle list.
Now G2/M2 returns from its syscall and takes over P1:
8. G2/M2 returns from its blocked syscall and gets P1 from the idle
list.
9. G2/M2 acquires P1, which sets P1's status to _Prunning.
10. G2/M2 starts a new syscall and invokes reentersyscall, which sets
P1's status to _Psyscall.
Back on G1/M1:
11. G1/M1 finally acquires sched.lock in entersyscall_gcwait.
At this point, G1/M1 still thinks it's running on P1. P1's status is
_Psyscall, which is consistent with what G1/M1 is doing, but it's
_Psyscall because *G2/M2* put it in to _Psyscall, not G1/M1. This is
basically an ABA race on P1's status.
Because forEachP currently shares stopwait with stopTheWorld. G1/M1's
entersyscall_gcwait observes the non-zero stopwait set by forEachP,
but mistakes it for a stopTheWorld. It cas's P1's status from
_Psyscall (set by G2/M2) to _Pgcstop and proceeds to decrement
stopwait one more time than forEachP was expecting.
Fixes#10618. (See the issue for details on why the above race is safe
when forEachP is not involved.)
Prior to this commit, the command
stress ./runtime.test -test.run TestFutexsleep\|TestGoroutineProfile
would reliably fail after a few hundred runs. With this commit, it
ran for over 2 million runs and never crashed.
Change-Id: I9a91ea20035b34b6e5f07ef135b144115f281f30
Reviewed-on: https://go-review.googlesource.com/10157
Reviewed-by: Russ Cox <rsc@golang.org>
Currently, startTheWorld releases worldsema before starting the
world. Since startTheWorld can change gomaxprocs after allowing Ps to
run, this means that gomaxprocs can change while another P holds
worldsema.
Unfortunately, the garbage collector and forEachP assume that holding
worldsema protects against changes in gomaxprocs (which it *almost*
does). In particular, this is causing somewhat frequent "P did not run
fn" crashes in forEachP in the runtime tests because gomaxprocs is
changing between the several loops that forEachP does over all the Ps.
Fix this by only releasing worldsema after the world is started.
This relates to issue #10618. forEachP still fails under stress
testing, but much less frequently.
Change-Id: I085d627b70cca9ebe9af28fe73b9872f1bb224ff
Reviewed-on: https://go-review.googlesource.com/10156
Reviewed-by: Russ Cox <rsc@golang.org>
Currently, startTheWorld clears preemptoff for the current M before
starting the world. A few callers increment m.locks around
startTheWorld, presumably to prevent preemption any time during
starting the world. This is almost certainly pointless (none of the
other callers do this), but there's no harm in making startTheWorld
keep preemption disabled until it's all done, which definitely lets us
drop these m.locks manipulations.
Change-Id: I8a93658abd0c72276c9bafa3d2c7848a65b4691a
Reviewed-on: https://go-review.googlesource.com/10155
Reviewed-by: Russ Cox <rsc@golang.org>
There are several steps to stopping and starting the world and
currently they're open-coded in several places. The garbage collector
is the only thing that needs to stop and start the world in a
non-trivial pattern. Replace all other uses with calls to higher-level
functions that implement the entire pattern necessary to stop and
start the world.
This is a pure refectoring and should not change any code semantics.
In the following commits, we'll make changes that are easier to do
with this abstraction in place.
This commit renames the old starttheworld to startTheWorldWithSema.
This is a slight misnomer right now because the callers release
worldsema just before calling this. However, a later commit will swap
these and I don't want to think of another name in the mean time.
Change-Id: I5dc97f87b44fb98963c49c777d7053653974c911
Reviewed-on: https://go-review.googlesource.com/10154
Reviewed-by: Russ Cox <rsc@golang.org>
Currently, runqsteal steals Gs from another P into an intermediate
buffer and then copies those Gs into the current P's run queue. This
intermediate buffer itself was moved from the stack to the P in commit
c4fe503 to eliminate the cost of zeroing it on every steal.
This commit follows up c4fe503 by stealing directly into the current
P's run queue, which eliminates the copy and the need for the
intermediate buffer. The update to the tail pointer is only committed
once the entire steal operation has succeeded, so the semantics of
stealing do not change.
Change-Id: Icdd7a0eb82668980bf42c0154b51eef6419fdd51
Reviewed-on: https://go-review.googlesource.com/9998
Reviewed-by: Russ Cox <rsc@golang.org>
Run-TryBot: Austin Clements <austin@google.com>
One important use case is a pipeline computation that pass values
from one Goroutine to the next and then exits or is placed in a
wait state. If GOMAXPROCS > 1 a Goroutine running on P1 will enable
another Goroutine and then immediately make P1 available to execute
it. We need to prevent other Ps from stealing the G that P1 is about
to execute. Otherwise the Gs can thrash between Ps causing unneeded
synchronization and slowing down throughput.
Fix this by changing the stealing logic so that when a P attempts to
steal the only G on some other P's run queue, it will pause
momentarily to allow the victim P to schedule the G.
As part of optimizing stealing we also use a per P victim queue
move stolen gs. This eliminates the zeroing of a stack local victim
queue which turned out to be expensive.
This CL is a necessary but not sufficient prerequisite to changing
the default value of GOMAXPROCS to something > 1 which is another
CL/discussion.
For highly serialized programs, such as GoroutineRing below this can
make a large difference. For larger and more parallel programs such
as the x/benchmarks there is no noticeable detriment.
~/work/code/src/rsc.io/benchstat/benchstat old.txt new.txt
name old mean new mean delta
GoroutineRing 30.2µs × (0.98,1.01) 30.1µs × (0.97,1.04) ~ (p=0.941)
GoroutineRing-2 113µs × (0.91,1.07) 30µs × (0.98,1.03) -73.17% (p=0.004)
GoroutineRing-4 144µs × (0.98,1.02) 32µs × (0.98,1.01) -77.69% (p=0.000)
GoroutineRingBuf 32.7µs × (0.97,1.03) 32.5µs × (0.97,1.02) ~ (p=0.795)
GoroutineRingBuf-2 120µs × (0.92,1.08) 33µs × (1.00,1.00) -72.48% (p=0.004)
GoroutineRingBuf-4 138µs × (0.92,1.06) 33µs × (1.00,1.00) -76.21% (p=0.003)
The bench benchmarks show little impact.
old new
garbage 7032879 7011696
httpold 25509 25301
splayold 1022073 1019499
jsonold 28230624 28081433
Change-Id: I228c48fed8d85c9bbef16a7edc53ab7898506f50
Reviewed-on: https://go-review.googlesource.com/9872
Reviewed-by: Austin Clements <austin@google.com>
Running these tests on the system stack is problematic because they
allocate Ps, which are large enough to overflow the system stack if
they are stack-allocated. It used to be necessary to run these tests
on the system stack because they were written in C, but since this is
no longer the case, we can fix this problem by simply not running the
tests on the system stack.
This also means we no longer need the hack in one of these tests that
forces the allocated Ps to escape to the heap, so eliminate that as
well.
Change-Id: I9064f5f8fd7f7b446ff39a22a70b172cfcb2dc57
Reviewed-on: https://go-review.googlesource.com/9923
Reviewed-by: Rick Hudson <rlh@golang.org>
Run-TryBot: Austin Clements <austin@google.com>
Since we now have stack information for code running on the
systemstack, we can traceback over it. To make cpu profiles useful,
add a case in gentraceback to jump over systemstack switches.
Fixes#10609.
Change-Id: I21f47fcc802c07c5d4a1ada56374314e388a6dc7
Reviewed-on: https://go-review.googlesource.com/9506
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Current code just checks the consistency (that the functab is correctly
sorted by PC, etc) of the moduledata object that the runtime belongs to.
Change to check all of them.
Change-Id: I544a44c5de7445fff87d3cdb4840ff04c5e2bf75
Reviewed-on: https://go-review.googlesource.com/9773
Reviewed-by: Ian Lance Taylor <iant@golang.org>
Run-TryBot: Ian Lance Taylor <iant@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Freezetheworld still has stuff to do when gomaxprocs=1.
In particular, signals can come in on other Ms (like the GC M, say)
and the single user M is still running.
Fixes#10546
Change-Id: I2f07f17d1c81e93cf905df2cb087112d436ca7e7
Reviewed-on: https://go-review.googlesource.com/9551
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Kind of a hack, but makes the non-optimized builds pass.
Fixes#10079
Change-Id: I26f41c546867f8f3f16d953dc043e784768f2aff
Reviewed-on: https://go-review.googlesource.com/9552
Reviewed-by: Russ Cox <rsc@golang.org>
This includes the following information in the per-function summary:
outK = paramJ encoded in outK bits for paramJ
outK = *paramJ encoded in outK bits for paramJ
heap = paramJ EscHeap
heap = *paramJ EscContentEscapes
Note that (currently) if the address of a parameter is taken and
returned, necessarily a heap allocation occurred to contain that
reference, and the heap can never refer to stack, therefore the
parameter and everything downstream from it escapes to the heap.
The per-function summary information now has a tuneable number of bits
(2 is probably noticeably better than 1, 3 is likely overkill, but it
is now easy to check and the -m debugging output includes information
that allows you to figure out if more would be better.)
A new test was added to check pointer flow through struct-typed and
*struct-typed parameters and returns; some of these are sensitive to
the number of summary bits, and ought to yield better results with a
more competent escape analysis algorithm. Another new test checks
(some) correctness with array parameters, results, and operations.
The old analysis inferred a piece of plan9 runtime was non-escaping by
counteracting overconservative analysis with buggy analysis; with the
bug fixed, the result was too conservative (and it's not easy to fix
in this framework) so the source code was tweaked to get the desired
result. A test was added against the discovered bug.
The escape analysis was further improved splitting the "level" into
3 parts, one tracking the conventional "level" and the other two
computing the highest-level-suffix-from-copy, which is used to
generally model the cancelling effect of indirection applied to
address-of.
With the improved escape analysis enabled, it was necessary to
modify one of the runtime tests because it now attempts to allocate
too much on the (small, fixed-size) G0 (system) stack and this
failed the test.
Compiling src/std after touching src/runtime/*.go with -m logging
turned on shows 420 fewer heap allocation sites (10538 vs 10968).
Profiling allocations in src/html/template with
for i in {1..5} ;
do go tool 6g -memprofile=mastx.${i}.prof -memprofilerate=1 *.go;
go tool pprof -alloc_objects -text mastx.${i}.prof ;
done
showed a 15% reduction in allocations performed by the compiler.
Update #3753
Update #4720Fixes#10466
Change-Id: I0fd97d5f5ac527b45f49e2218d158a6e89951432
Reviewed-on: https://go-review.googlesource.com/8202
Run-TryBot: David Chase <drchase@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Russ Cox <rsc@golang.org>
This avoids confusion with the main findrunnable in the scheduler.
Change-Id: I8cf40657557a8610a2fe5a2f74598518256ca7f0
Reviewed-on: https://go-review.googlesource.com/9305
Reviewed-by: Rick Hudson <rlh@golang.org>
Currently, we use a full stop-the-world around enabling write
barriers. This is to ensure that all Gs have enabled write barriers
before any blackening occurs (either in gcBgMarkWorker() or in
gcAssistAlloc()).
However, there's no need to bring the whole world to a synchronous
stop to ensure this. This change replaces the STW with a ragged
barrier that ensures each P has individually observed that write
barriers should be enabled before GC performs any blackening.
Change-Id: If2f129a6a55bd8bdd4308067af2b739f3fb41955
Reviewed-on: https://go-review.googlesource.com/8207
Reviewed-by: Russ Cox <rsc@golang.org>
Reviewed-by: Rick Hudson <rlh@golang.org>
This adds forEachP, which performs a general-purpose ragged global
barrier. forEachP takes a callback and invokes it for every P at a GC
safe point.
Ps that are idle or in a syscall are considered to be at a continuous
safe point. forEachP ensures that these Ps do not change state by
forcing all syscall Ps into idle and holding the sched.lock.
To ensure that Ps do not enter syscall or idle without running the
safe-point function, this adds checks for a pending callback every
place there is currently a gcwaiting check.
We'll use forEachP to replace the STW around enabling the write
barrier and to replace the current asynchronous per-M wbuf cache with
a cooperatively managed per-P gcWork cache.
Change-Id: Ie944f8ce1fead7c79bf271d2f42fcd61a41bb3cc
Reviewed-on: https://go-review.googlesource.com/8206
Reviewed-by: Russ Cox <rsc@golang.org>
Reviewed-by: Rick Hudson <rlh@golang.org>
This fixes a bug where the runtime ready()s a goroutine while setting
up a new M that's initially marked as spinning, causing the scheduler
to later panic when it finds work in the run queue of a P associated
with a spinning M. Specifically, the sequence of events that can lead
to this is:
1) sysmon calls handoffp to hand off a P stolen from a syscall.
2) handoffp sees no pending work on the P, so it calls startm with
spinning set.
3) startm calls newm, which in turn calls allocm to allocate a new M.
4) allocm "borrows" the P we're handing off in order to do allocation
and performs this allocation.
5) This allocation may assist the garbage collector, and this assist
may detect the end of concurrent mark and ready() the main GC
goroutine to signal this.
6) This ready()ing puts the GC goroutine on the run queue of the
borrowed P.
7) newm starts the OS thread, which runs mstart and subsequently
mstart1, which marks the M spinning because startm was called with
spinning set.
8) mstart1 enters the scheduler, which panics because there's work on
the run queue, but the M is marked spinning.
To fix this, before marking the M spinning in step 7, add a check to
see if work was been added to the P's run queue. If this is the case,
undo the spinning instead.
Fixes#10573.
Change-Id: I4670495ae00582144a55ce88c45ae71de597cfa5
Reviewed-on: https://go-review.googlesource.com/9332
Reviewed-by: Russ Cox <rsc@golang.org>
Run-TryBot: Austin Clements <austin@google.com>
This adds a check that we never put a P on the idle list when it has
work on its local run queue.
Change-Id: Ifcfab750de60c335148a7f513d4eef17be03b6a7
Reviewed-on: https://go-review.googlesource.com/9324
Reviewed-by: Rick Hudson <rlh@golang.org>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Currently, when allocation reaches the GC trigger, the runtime uses
readyExecute to start the GC goroutine immediately rather than wait
for the scheduler to get around to the GC goroutine while the mutator
continues to grow the heap.
Now that the scheduler runs the most recently readied goroutine when a
goroutine yields its time slice, this rigmarole is no longer
necessary. The runtime can simply ready the GC goroutine and yield
from the readying goroutine.
Change-Id: I3b4ebadd2a72a923b1389f7598f82973dd5c8710
Reviewed-on: https://go-review.googlesource.com/9292
Reviewed-by: Rick Hudson <rlh@golang.org>
Reviewed-by: Russ Cox <rsc@golang.org>
Run-TryBot: Austin Clements <austin@google.com>
Currently, when the runtime ready()s a G, it adds it to the end of the
current P's run queue and continues running. If there are many other
things in the run queue, this can result in a significant delay before
the ready()d G actually runs and can hurt fairness when other Gs in
the run queue are CPU hogs. For example, if there are three Gs sharing
a P, one of which is a CPU hog that never voluntarily gives up the P
and the other two of which are doing small amounts of work and
communicating back and forth on an unbuffered channel, the two
communicating Gs will get very little CPU time.
Change this so that when G1 ready()s G2 and then blocks, the scheduler
immediately hands off the remainder of G1's time slice to G2. In the
above example, the two communicating Gs will now act as a unit and
together get half of the CPU time, while the CPU hog gets the other
half of the CPU time.
This fixes the problem demonstrated by the ping-pong benchmark added
in the previous commit:
benchmark old ns/op new ns/op delta
BenchmarkPingPongHog 684287 825 -99.88%
On the x/benchmarks suite, this change improves the performance of
garbage by ~6% (for GOMAXPROCS=1 and 4), and json by 28% and 36% for
GOMAXPROCS=1 and 4. It has negligible effect on heap size.
This has no effect on the go1 benchmark suite since those benchmarks
are mostly single-threaded.
Change-Id: I858a08eaa78f702ea98a5fac99d28a4ac91d339f
Reviewed-on: https://go-review.googlesource.com/9289
Reviewed-by: Rick Hudson <rlh@golang.org>
Reviewed-by: Russ Cox <rsc@golang.org>
There are a variety of places where we check if a P's run queue is
empty. This test is about to get slightly more complicated, so factor
it out into a new function, runqempty. This function is inlinable, so
this has no effect on performance.
Change-Id: If4a0b01ffbd004937de90d8d686f6ded4aad2c6b
Reviewed-on: https://go-review.googlesource.com/9287
Reviewed-by: Rick Hudson <rlh@golang.org>
Reviewed-by: Russ Cox <rsc@golang.org>
Currently, in accordance with the GC pacing proposal, we schedule
background marking with a goal of achieving 25% utilization *total*
between mutator assists and background marking. This is stricter than
was set out in the Go 1.5 proposal, which suggests that the garbage
collector can use 25% just for itself and anything the mutator does to
help out is on top of that. It also has several technical
drawbacks. Because mutator assist time is constantly changing and we
can't have instantaneous information on background marking time, it
effectively requires hitting a moving target based on out-of-date
information. This works out in the long run, but works poorly for
short GC cycles and on short time scales. Also, this requires
time-multiplexing all Ps between the mutator and background GC since
the goal utilization of background GC constantly fluctuates. This
results in a complicated scheduling algorithm, poor affinity, and
extra overheads from context switching.
This change modifies the way we schedule and run background marking so
that background marking always consumes 25% of GOMAXPROCS and mutator
assist is in addition to this. This enables a much more robust
scheduling algorithm where we pre-determine the number of Ps we should
dedicate to background marking as well as the utilization goal for a
single floating "remainder" mark worker.
Change-Id: I187fa4c03ab6fe78012a84d95975167299eb9168
Reviewed-on: https://go-review.googlesource.com/9013
Reviewed-by: Rick Hudson <rlh@golang.org>
Currently, the concurrent mark phase is performed by the main GC
goroutine. Prior to the previous commit enabling preemption, this
caused marking to always consume 1/GOMAXPROCS of the available CPU
time. If GOMAXPROCS=1, this meant background GC would consume 100% of
the CPU (effectively a STW). If GOMAXPROCS>4, background GC would use
less than the goal of 25%. If GOMAXPROCS=4, background GC would use
the goal 25%, but if the mutator wasn't using the remaining 75%,
background marking wouldn't take advantage of the idle time. Enabling
preemption in the previous commit made GC miss CPU targets in
completely different ways, but set us up to bring everything back in
line.
This change replaces the fixed GC goroutine with per-P background mark
goroutines. Once started, these goroutines don't go in the standard
run queues; instead, they are scheduled specially such that the time
spent in mutator assists and the background mark goroutines totals 25%
of the CPU time available to the program. Furthermore, this lets
background marking take advantage of idle Ps, which significantly
boosts GC performance for applications that under-utilize the CPU.
This requires also changing how time is reported for gctrace, so this
change splits the concurrent mark CPU time into assist/background/idle
scanning.
This also requires increasing the size of the StackRecord slice used
in a GoroutineProfile test.
Change-Id: I0936ff907d2cee6cb687a208f2df47e8988e3157
Reviewed-on: https://go-review.googlesource.com/8850
Reviewed-by: Rick Hudson <rlh@golang.org>
This CL revises CL 7504 to use explicitly uintptr types for the
struct fields that are going to be updated sometimes without
write barriers. The result is that the fields are now updated *always*
without write barriers.
This approach has two important properties:
1) Now the GC never looks at the field, so if the missing reference
could cause a problem, it will do so all the time, not just when the
write barrier is missed at just the right moment.
2) Now a write barrier never happens for the field, avoiding the
(correct) detection of inconsistent write barriers when GODEBUG=wbshadow=1.
Change-Id: Iebd3962c727c0046495cc08914a8dc0808460e0e
Reviewed-on: https://go-review.googlesource.com/9019
Reviewed-by: Austin Clements <austin@google.com>
Run-TryBot: Russ Cox <rsc@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
readyExecute passes a closure to mcall that captures an argument to
readyExecute. Since mcall is marked noescape, this closure lives on
the stack of the calling goroutine. However, the closure puts the
calling goroutine on the run queue (and switches to a new
goroutine). If the calling goroutine gets scheduled before the mcall
returns, this stack-allocated closure will become invalid while it's
still executing. One consequence of this we've observed is that the
captured gp variable can get overwritten before the call to
execute(gp), causing execute(gp) to segfault.
Fix this by passing the currently captured gp variable through a field
in the calling goroutine's g struct so that the func is no longer a
closure.
To prevent problems like this in the future, this change also removes
the go:noescape annotation from mcall. Due to a compiler bug, this
will currently cause a func closure passed to mcall to be implicitly
allocated rather than refusing the implicit allocation. However, this
is okay because there are no other closures passed to mcall right now
and the compiler bug will be fixed shortly.
Fixes#10428.
Change-Id: I49b48b85de5643323b89e9eaa4df63854e968c32
Reviewed-on: https://go-review.googlesource.com/8866
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: David Chase <drchase@google.com>
Reviewed-by: Russ Cox <rsc@golang.org>
A G will be preempted if it runs for 10ms without blocking. Currently
this constant is hard-coded in retake. Move it to a global const.
We'll use the time slice length in scheduling background GC.
Change-Id: I79a979948af2fad3afe5df9d4af4062f166554b7
Reviewed-on: https://go-review.googlesource.com/8838
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
Reviewed-by: Rick Hudson <rlh@golang.org>
Currently, when allocation reaches the concurrent GC trigger size, we
start the concurrent collector by ready'ing its G. This simply puts it
on the end of the P's run queue, which means we may not actually start
GC for some time as the current G continues to run and then the P
drains other Gs already on its run queue. Since the mutator can
continue to allocate, the heap can potentially be much larger than we
intended by the time GC actually starts. Furthermore, how much larger
is difficult to predict since it depends on the scheduler.
Fix this by preempting the current G and switching directly to the
concurrent GC G as soon as we reach the trigger heap size.
On the garbage benchmark from the benchmarks subrepo with
GOMAXPROCS=4, this reduces the time from triggering the GC to the
beginning of sweep termination by 10 to 30 milliseconds, which reduces
allocation after the trigger by up to 10MB (a large fraction of the
64MB live heap the benchmark tries to maintain).
One other known source of delay before we "really" start GC is the
sweep finalization performed before sweep termination. This has
similar negative effects on heap size and predictability, but is an
orthogonal problem. This change adds a TODO for this.
Change-Id: I8bae98cb43685c1bf353ff55868e4647e3743c47
Reviewed-on: https://go-review.googlesource.com/8513
Reviewed-by: Rick Hudson <rlh@golang.org>
exitsyscallfast checks for freezetheworld, but does so only by
checking if stopwait is positive. This can also happen during
stoptheworld, which is harmless, but confusing. Shortly, it will be
important that we get to the p.status cas even if stopwait is set.
Hence, make this test more specific so it only triggers with
freezetheworld and not other uses of stopwait.
Change-Id: Ibb722cd8360c3ed5a9654482519e3ceb87a8274d
Reviewed-on: https://go-review.googlesource.com/8205
Reviewed-by: Russ Cox <rsc@golang.org>
'themoduledata' doesn't really make sense now we support multiple moduledata
objects.
Change-Id: I8263045d8f62a42cb523502b37289b0fba054f62
Reviewed-on: https://go-review.googlesource.com/8521
Reviewed-by: Ian Lance Taylor <iant@golang.org>
Run-TryBot: Ian Lance Taylor <iant@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
This CL is quite conservative in some ways. It continues to define
symbols that have no real purpose (e.g. epclntab). These could be
deleted if there is no concern that external tools might look for them.
It would also now be possible to make some changes to the pcln data but
I get the impression that would definitely require some thought and
discussion.
Change-Id: Ib33cde07e4ec38ecc1d6c319a10138c9347933a3
Reviewed-on: https://go-review.googlesource.com/7616
Run-TryBot: Ian Lance Taylor <iant@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Ian Lance Taylor <iant@golang.org>
This tracks both total CPU time used by GC and the total time
available to all Ps since the beginning of the program and uses this
to derive a cumulative CPU usage percent for the gctrace line.
Change-Id: Ica85372b8dd45f7621909b325d5ac713a9b0d015
Reviewed-on: https://go-review.googlesource.com/8350
Reviewed-by: Russ Cox <rsc@golang.org>
In preparation for being able to run a go program that has code
in several objects, this changes from having several linker
symbols used by the runtime into having one linker symbol that
points at a structure containing the needed data. Multiple
object support will construct a linked list of such structures.
A follow up will initialize the slices in the themoduledata
structure directly from the linker but I was aiming for a minimal
diff for now.
Change-Id: I613cce35309801cf265a1d5ae5aaca8d689c5cbf
Reviewed-on: https://go-review.googlesource.com/7441
Reviewed-by: Ian Lance Taylor <iant@golang.org>
Currently, various functions are marked with the comment
// May run without a P, so write barriers are not allowed.
However, "running without a P" is ambiguous. We intended these to mean
that m.p may be nil (which is the condition checked by the write
barrier). The comment could also be taken to mean that a
stop-the-world may happen, which is not the case for these functions
because they run in situations where there is in fact a function on
the stack holding a P locally, it just isn't in m.p.
Change these comments to state precisely what we mean, that m.p may be
nil.
Change-Id: I4a4a1d26aebd455e5067540e13b9f96a7482146c
Reviewed-on: https://go-review.googlesource.com/8209
Reviewed-by: Minux Ma <minux@golang.org>
Reviewed-by: Rick Hudson <rlh@golang.org>
handoffp by definition runs without a P, so it's not allowed to have
write barriers. It doesn't have any right now, but mark it
nowritebarrier to disallow any creeping in in the future. handoffp in
turns calls startm, newm, and newosproc, all of which are "below Go"
and make sense to run without a P, so disallow write barriers in these
as well.
For most functions, we've done this because they may race with
stoptheworld() and hence must not have write barriers. For these
functions, it's a little different: the world can't stop while we're
in handoffp, so this race isn't present. But we implement this
restriction with a somewhat broader rule that you can't have a write
barrier without a P. We like this rule because it's simple and means
that our write barriers can depend on there being a P, even though
this rule is actually a little broader than necessary. Hence, even
though there's no danger of the race in these functions, we want to
adhere to the broader rule.
Change-Id: Ie22319c30eea37d703eb52f5c7ca5da872030b88
Reviewed-on: https://go-review.googlesource.com/8130
Run-TryBot: Austin Clements <austin@google.com>
Reviewed-by: Minux Ma <minux@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Rick Hudson <rlh@golang.org>
Also invert it, which means it no longer needs to cross the cgo
package boundary.
Change-Id: I393cd073bda02b591a55d6bc6b8bb94970ea71cd
Reviewed-on: https://go-review.googlesource.com/8082
Reviewed-by: Ian Lance Taylor <iant@golang.org>
Run-TryBot: David Crawshaw <crawshaw@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
We do not use SEH to handle Windows exception anymore.
Change-Id: I0ac807a0fed7a5b4c745454246764c524460472b
Reviewed-on: https://go-review.googlesource.com/8071
Reviewed-by: Minux Ma <minux@golang.org>
Previously the extra m needed for cgo callbacks was created on the
first callback. This works for cgo, however the cgocallback mechanism
is also borrowed by badsignal which can run before any cgo calls are
made.
Now we initialize the extra M at runtime startup before any signal
handlers are registered, so badsignal cannot be called until the
extra M is ready.
Updates #10207.
Change-Id: Iddda2c80db6dc52d8b60e2b269670fbaa704c7b3
Reviewed-on: https://go-review.googlesource.com/7978
Reviewed-by: Ian Lance Taylor <iant@golang.org>
Run-TryBot: David Crawshaw <crawshaw@golang.org>
The GC assumes that there will be no asynchronous write barriers when
the world is stopped. This keeps the synchronization between write
barriers and the GC simple. However, currently, there are a few places
in runtime code where this assumption does not hold.
The GC stops the world by collecting all Ps, which stops all user Go
code, but small parts of the runtime can run without a P. For example,
the code that releases a P must still deschedule its G onto a runnable
queue before stopping. Similarly, when a G returns from a long-running
syscall, it must run code to reacquire a P.
Currently, this code can contain write barriers. This can lead to the
GC collecting reachable objects if something like the following
sequence of events happens:
1. GC stops the world by collecting all Ps.
2. G #1 returns from a syscall (for example), tries to install a
pointer to object X, and calls greyobject on X.
3. greyobject on G #1 marks X, but does not yet add it to a write
buffer. At this point, X is effectively black, not grey, even though
it may point to white objects.
4. GC reaches X through some other path and calls greyobject on X, but
greyobject does nothing because X is already marked.
5. GC completes.
6. greyobject on G #1 adds X to a work buffer, but it's too late.
7. Objects that were reachable only through X are incorrectly collected.
To fix this, we check the invariant that no asynchronous write
barriers happen when the world is stopped by checking that write
barriers always have a P, and modify all currently known sources of
these writes to disable the write barrier. In all modified cases this
is safe because the object in question will always be reachable via
some other path.
Some of the trace code was turned off, in particular the
code that traces returning from a syscall. The GC assumes
that as far as the heap is concerned the thread is stopped
when it is in a syscall. Upon returning the trace code
must not do any heap writes for the same reasons discussed
above.
Fixes#10098Fixes#9953Fixes#9951Fixes#9884
May relate to #9610#9771
Change-Id: Ic2e70b7caffa053e56156838eb8d89503e3c0c8a
Reviewed-on: https://go-review.googlesource.com/7504
Reviewed-by: Austin Clements <austin@google.com>
Stip uninteresting bottom and top frames from trace stacks.
This makes both binary and json trace files smaller,
and also makes stacks shorter and more readable in the viewer.
Change-Id: Ib9c80ccc280504f0e235f867f53f1d2652c41583
Reviewed-on: https://go-review.googlesource.com/5523
Reviewed-by: Keith Randall <khr@golang.org>
Run-TryBot: Dmitry Vyukov <dvyukov@google.com>
The unbounded list-based defer pool can grow infinitely.
This can happen if a goroutine routinely allocates a defer;
then blocks on one P; and then unblocked, scheduled and
frees the defer on another P.
The scenario was reported on golang-nuts list.
We've been here several times. Any unbounded local caches
are bad and grow to infinite size. This change introduces
central defer pool; local pools become fixed-size
with the only purpose of amortizing accesses to the
central pool.
Freedefer now executes on system stack to not consume
nosplit stack space.
Change-Id: I1a27695838409259d1586a0adfa9f92bccf7ceba
Reviewed-on: https://go-review.googlesource.com/3967
Reviewed-by: Keith Randall <khr@golang.org>
Run-TryBot: Dmitry Vyukov <dvyukov@google.com>
The unbounded list-based sudog cache can grow infinitely.
This can happen if a goroutine is routinely blocked on one P
and then unblocked and scheduled on another P.
The scenario was reported on golang-nuts list.
We've been here several times. Any unbounded local caches
are bad and grow to infinite size. This change introduces
central sudog cache; local caches become fixed-size
with the only purpose of amortizing accesses to the
central cache.
The change required to move sudog cache from mcache to P,
because mcache is not scanned by GC.
Change-Id: I3bb7b14710354c026dcba28b3d3c8936a8db4e90
Reviewed-on: https://go-review.googlesource.com/3742
Reviewed-by: Keith Randall <khr@golang.org>
Run-TryBot: Dmitry Vyukov <dvyukov@google.com>
We used to not call traceback from goexit1.
But now tracer does it and crashes on amd64p32:
runtime: unexpected return pc for runtime.getg called from 0x108a4240
goroutine 18 [runnable, locked to thread]:
runtime.traceGoEnd()
src/runtime/trace.go:758 fp=0x10818fe0 sp=0x10818fdc
runtime.goexit1()
src/runtime/proc1.go:1540 +0x20 fp=0x10818fe8 sp=0x10818fe0
runtime.getg(0x0)
src/runtime/asm_386.s:2414 fp=0x10818fec sp=0x10818fe8
created by runtime/pprof_test.TestTraceStress
src/runtime/pprof/trace_test.go:123 +0x500
Return PC from goexit1 points right after goexit (+0x6).
It happens to work most of the time somehow.
This change fixes traceback from goexit1 by adding an additional NOP to goexit.
Fixes#9931
Change-Id: Ied25240a181b0a2d7bc98127b3ed9068e9a1a13e
Reviewed-on: https://go-review.googlesource.com/5460
Reviewed-by: Russ Cox <rsc@golang.org>
There is no sense in trying to netpoll while there is
already a thread blocked in netpoll. And in most cases
there must be a thread blocked in netpoll, because
the first otherwise idle thread does blocking netpoll.
On some program I see that netpoll called from findrunnable
consumes 3% of time.
Change-Id: I0af1a73d637bffd9770ea50cb9278839716e8816
Reviewed-on: https://go-review.googlesource.com/4553
Reviewed-by: Keith Randall <khr@golang.org>
Run-TryBot: Dmitry Vyukov <dvyukov@google.com>
This makes Go's CPU profiling code somewhat more idiomatic; e.g.,
using := instead of forward declaring variables, using "int" for
element counts instead of "uintptr", and slices instead of C-style
pointer+length. This makes the code easier to read and eliminates a
lot of type conversion clutter.
Additionally, in sigprof we can collect just maxCPUProfStack stack
frames, as cpuprof won't use more than that anyway.
Change-Id: I0235b5ae552191bcbb453b14add6d8c01381bd06
Reviewed-on: https://go-review.googlesource.com/6072
Run-TryBot: Matthew Dempsky <mdempsky@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>