There's no b in race detector.
The new flag matches the one in the go command
(go test -race math).
R=golang-dev, dsymonds
CC=golang-dev
https://golang.org/cl/7072043
This CL adds a flag parser that matches the semantics of Go's
package flag. It also changes the linkers and compilers to use
the new flag parser.
Command lines that used to work, like
8c -FVw
6c -Dfoo
5g -I/foo/bar
now need to be split into separate arguments:
8c -F -V -w
6c -D foo
5g -I /foo/bar
The new spacing will work with both old and new tools.
The new parser also allows = for arguments, as in
6c -D=foo
5g -I=/foo/bar
but that syntax will not work with the old tools.
In addition to matching standard Go binary flag parsing,
the new flag parser generates more detailed usage messages
and opens the door to long flag names.
The recently added gc flag -= has been renamed -complete.
R=remyoudompheng, daniel.morsing, minux.ma, iant
CC=golang-dev
https://golang.org/cl/7035043
This is an experiment in static analysis of Go programs
to understand which struct fields a program might use.
It is not part of the Go language specification, it must
be enabled explicitly when building the toolchain,
and it may be removed at any time.
After building the toolchain with GOEXPERIMENT=fieldtrack,
a specific field can be marked for tracking by including
`go:"track"` in the field tag:
package pkg
type T struct {
F int `go:"track"`
G int // untracked
}
To simplify usage, only named struct types can have
tracked fields, and only exported fields can be tracked.
The implementation works by making each function begin
with a sequence of no-op USEFIELD instructions declaring
which tracked fields are accessed by a specific function.
After the linker's dead code elimination removes unused
functions, the fields referred to by the remaining
USEFIELD instructions are the ones reported as used by
the binary.
The -k option to the linker specifies the fully qualified
symbol name (such as my/pkg.list) of a string variable that
should be initialized with the field tracking information
for the program. The field tracking string is a sequence
of lines, each terminated by a \n and describing a single
tracked field referred to by the program. Each line is made
up of one or more tab-separated fields. The first field is
the name of the tracked field, fully qualified, as in
"my/pkg.T.F". Subsequent fields give a shortest path of
reverse references from that field to a global variable or
function, corresponding to one way in which the program
might reach that field.
A common source of false positives in field tracking is
types with large method sets, because a reference to the
type descriptor carries with it references to all methods.
To address this problem, the CL also introduces a comment
annotation
//go:nointerface
that marks an upcoming method declaration as unavailable
for use in satisfying interfaces, both statically and
dynamically. Such a method is also invisible to package
reflect.
Again, all of this is disabled by default. It only turns on
if you have GOEXPERIMENT=fieldtrack set during make.bash.
R=iant, ken
CC=golang-dev
https://golang.org/cl/6749064
1. correctly initialize .plt.got entries (point to the 1st entry)
2. add section .rel.plt (FreeBSD insists PLT relocs to be there)
3. put relocs of .got.plt into .rel.plt
4. set ELFOSABI_FREEBSD in ELF header
R=rsc
CC=golang-dev
https://golang.org/cl/6643050
Fixes#3456.
This proposal is a reformulation of CL 5987063. This CL resets
the default GOARM value to 6 and allows the use of the VFPv3
optimisation if GOARM=7. Binaries built with this CL in place
will abort if GOARM=7 was used and the target host does not
support VFPv3.
R=minux.ma, rsc, ajstarks
CC=golang-dev
https://golang.org/cl/6501099
Some newer Linux distributions (Ubuntu ARM at least) use a new multiarch
directory organization, where dynamic linker is no longer in the hardcoded
path in our linker.
For example, Ubuntu 12.04 ARM hardfloat places its dynamic linker at
/lib/arm-linux-gnueabihf/ld-linux.so.3
Ref: http://lackof.org/taggart/hacking/multiarch/
Also, to support Debian GNU/kFreeBSD as a FreeBSD variant, we need this capability, so it's part of issue 3533.
This CL add a new pragma (#pragma dynlinker "path") to cc.
R=iant, rsc
CC=golang-dev
https://golang.org/cl/6086043
Part 1 of CL 5601044 (cgo: Linux/ARM support)
Limitation: doesn't support thumb library yet.
R=golang-dev, dave, rsc
CC=golang-dev
https://golang.org/cl/5991065
This leads to ~30kB improvement on code size for ARM machines with VFP/NEON.
Example: go test -c math
GOARM=5 GOARM=6
Old: 1884200 1839144
New: 1884165 1805245
-: 35 33899
R=rsc, bradfitz, dave, kai.backman
CC=golang-dev
https://golang.org/cl/5975060
dodata will convert to SNOPTRDATA if appropriate.
Should fix arm build (hope springs eternal).
TBR=golang-dev
CC=golang-dev
https://golang.org/cl/5687074
cc: add #pragma textflag to set it
runtime: mark mheap to go into noptr-bss.
remove special case in garbage collector
Remove the ARM from.flag field created by CL 5687044.
The DUPOK flag was already in p->reg, so keep using that.
Otherwise test/nilptr.go creates a very large binary.
Should fix the arm build.
Diagnosed by minux.ma; replacement for CL 5690044.
R=golang-dev, minux.ma, r
CC=golang-dev
https://golang.org/cl/5686060
ARM doesn't have the concept of scale, so I renamed the field
Addr.scale to Addr.flag to better reflect its true meaning.
R=rsc
CC=golang-dev
https://golang.org/cl/5687044
The garbage collector can avoid scanning this section, with
reduces collection time as well as the number of false positives.
Helps a little bit with issue 909, but certainly does not solve it.
R=ken2
CC=golang-dev
https://golang.org/cl/5671099
5l -v is for benchmarking various parts of the loader, but this code in
obj.c will clutter the output. I only comment them out, because this is
on par with 8l/6l.
R=golang-dev
CC=golang-dev
https://golang.org/cl/5600046
To allow these types as map keys, we must fill in
equal and hash functions in their algorithm tables.
Structs or arrays that are "just memory", like [2]int,
can and do continue to use the AMEM algorithm.
Structs or arrays that contain special values like
strings or interface values use generated functions
for both equal and hash.
The runtime helper func runtime.equal(t, x, y) bool handles
the general equality case for x == y and calls out to
the equal implementation in the algorithm table.
For short values (<= 4 struct fields or array elements),
the sequence of elementwise comparisons is inlined
instead of calling runtime.equal.
R=ken, mpimenov
CC=golang-dev
https://golang.org/cl/5451105
Reduces number of write+seek's from 88516 to 2080
when linking godoc with 6l.
Thanks to Alex Brainman for pointing out the
many small writes.
R=golang-dev, r, alex.brainman, robert.hencke
CC=golang-dev
https://golang.org/cl/4743043
Thumb code and ARM pre-V4 code is unused,
unmaintained, and almost certainly wrong by now.
Every time I try to change 5l I have to sort out
what's dead code and what's not.
30% of lines of code in this directory deleted.
R=ken2
CC=golang-dev
https://golang.org/cl/4601049
5a: add SQRTF and SQRTD
5l: add ASQRTF and ASQRTD
Use ARMv7 VFP VSQRT instruction to speed up math.Sqrt
R=rsc, dave, m
CC=golang-dev
https://golang.org/cl/4551082
A reference to the address of weak.foo resolves at link time
to the address of the symbol foo if foo would end up in the
binary anyway, or to zero if foo would not be in the binary.
For example:
int xxx = 1;
int yyy = 2;
int weak·xxx;
int weak·yyy;
void main·main(void) {
runtime·printf("%p %p %p\n", &xxx, &weak·xxx, &weak·yyy);
}
prints the same non-nil address twice, then 0 (because yyy is not
referenced so it was dropped from the binary).
This will be used by the reflection tables.
R=iant
CC=golang-dev
https://golang.org/cl/4223044
Fix problems found.
On amd64, various library routines had bigger
stack frames than expected, because large function
calls had been added.
runtime.assertI2T: nosplit stack overflow
120 assumed on entry to runtime.assertI2T
8 after runtime.assertI2T uses 112
0 on entry to runtime.newTypeAssertionError
-8 on entry to runtime.morestack01
runtime.assertE2E: nosplit stack overflow
120 assumed on entry to runtime.assertE2E
16 after runtime.assertE2E uses 104
8 on entry to runtime.panic
0 on entry to runtime.morestack16
-8 after runtime.morestack16 uses 8
runtime.assertE2T: nosplit stack overflow
120 assumed on entry to runtime.assertE2T
16 after runtime.assertE2T uses 104
8 on entry to runtime.panic
0 on entry to runtime.morestack16
-8 after runtime.morestack16 uses 8
runtime.newselect: nosplit stack overflow
120 assumed on entry to runtime.newselect
56 after runtime.newselect uses 64
48 on entry to runtime.printf
8 after runtime.printf uses 40
0 on entry to vprintf
-8 on entry to runtime.morestack16
runtime.selectdefault: nosplit stack overflow
120 assumed on entry to runtime.selectdefault
56 after runtime.selectdefault uses 64
48 on entry to runtime.printf
8 after runtime.printf uses 40
0 on entry to vprintf
-8 on entry to runtime.morestack16
runtime.selectgo: nosplit stack overflow
120 assumed on entry to runtime.selectgo
0 after runtime.selectgo uses 120
-8 on entry to runtime.gosched
On arm, 5c was tagging functions NOSPLIT that should
not have been, like the recursive function printpanics:
printpanics: nosplit stack overflow
124 assumed on entry to printpanics
112 after printpanics uses 12
108 on entry to printpanics
96 after printpanics uses 12
92 on entry to printpanics
80 after printpanics uses 12
76 on entry to printpanics
64 after printpanics uses 12
60 on entry to printpanics
48 after printpanics uses 12
44 on entry to printpanics
32 after printpanics uses 12
28 on entry to printpanics
16 after printpanics uses 12
12 on entry to printpanics
0 after printpanics uses 12
-4 on entry to printpanics
R=r, r2
CC=golang-dev
https://golang.org/cl/4188061
That is, move the pc/ln table and the symbol table
into the read-only data segment. This eliminates
the need for a special load command to map the
symbol table into memory, which makes the
information available on systems that couldn't handle
the magic load to 0x99000000, like NaCl and ARM QEMU
and Linux without config_highmem=y. It also
eliminates an #ifdef and some clumsy code to
find the symbol table on Windows.
The bad news is that the binary appears to be bigger
than it used to be. This is not actually the case, though:
the same amount of data is being mapped into memory
as before, and the tables are still read-only, so they're
still shared across multiple instances of the binary as
they were before. The difference is just that the tables
aren't squirreled away in some section that "size" doesn't
know to look at.
This is a checkpoint.
It probably breaks Windows and breaks NaCl more
than it used to be broken, but those will be fixed.
The logic involving -s needs to be revisited too.
Fixes#871.
R=ken2
CC=golang-dev
https://golang.org/cl/2587041
Because the SB is only good for 8k and Go programs
tend to have much more data than that, SB doesn't
save very much. A fmt.Printf-based hello world program
has 360 kB text segment. Removing SB makes the text
500 bytes (0.14%) longer.
R=ken2, r2, ken3
CC=golang-dev
https://golang.org/cl/2487042
Using explicit relocations internally, we can
represent the data for a particular symbol as
an initialized block of memory instead of a
linked list of ADATA instructions. The real
goal here is to be able to hand off some of the
relocations to the dynamic linker when interacting
with system libraries, but a pleasant side effect is
that the memory image is much more compact
than the ADATA list, so the linkers use less memory.
R=ken2
CC=golang-dev
https://golang.org/cl/2512041
The Plan 9 tools assume that long is 32 bits.
We converted all instances of long to int32 when
importing the code but missed the print formats.
Because int32 is always int on the compilers we use,
it is never correct to use %lux, %ld, etc. Convert to %ux, %d, etc.
(It matters because on 64-bit gcc, long is 64 bits,
so we were printing 32-bit quantities with 64-bit formats.)
R=ken2
CC=golang-dev
https://golang.org/cl/2491041
* Maintain Sym* list for text with individual
prog lists instead of using one huge list and
overloading p->pcond.
* Comment what each file is for.
* Move some output code from span.c to asm.c.
* Move profiling into prof.c, symbol table into symtab.c.
* Move mkfwd to ld/lib.c.
* Throw away dhog dynamic loading code.
* Throw away Alef become.
* Fix printing of WORD instructions in 5l -a.
Goal here is to be able to handle each piece of text or data
as a separate piece, both to make it easier to load the
occasional .o file and also to make it possible to split the
work across multiple threads.
R=ken2, r, ken3
CC=golang-dev
https://golang.org/cl/2335043