The main changes fall into a few patterns:
1. Replace #define with enum.
2. Add /*c2go */ comment giving effect of #define.
This is necessary for function-like #defines and
non-enum-able #defined constants.
(Not all compilers handle negative or large enums.)
3. Add extra braces in struct initializer.
(c2go does not implement the full rules.)
This is enough to let c2go typecheck the source tree.
There may be more changes once it is doing
other semantic analyses.
LGTM=minux, iant
R=minux, dave, iant
CC=golang-codereviews
https://golang.org/cl/106860045
The runtime has historically held two dedicated values g (current goroutine)
and m (current thread) in 'extern register' slots (TLS on x86, real registers
backed by TLS on ARM).
This CL removes the extern register m; code now uses g->m.
On ARM, this frees up the register that formerly held m (R9).
This is important for NaCl, because NaCl ARM code cannot use R9 at all.
The Go 1 macrobenchmarks (those with per-op times >= 10 µs) are unaffected:
BenchmarkBinaryTree17 5491374955 5471024381 -0.37%
BenchmarkFannkuch11 4357101311 4275174828 -1.88%
BenchmarkGobDecode 11029957 11364184 +3.03%
BenchmarkGobEncode 6852205 6784822 -0.98%
BenchmarkGzip 650795967 650152275 -0.10%
BenchmarkGunzip 140962363 141041670 +0.06%
BenchmarkHTTPClientServer 71581 73081 +2.10%
BenchmarkJSONEncode 31928079 31913356 -0.05%
BenchmarkJSONDecode 117470065 113689916 -3.22%
BenchmarkMandelbrot200 6008923 5998712 -0.17%
BenchmarkGoParse 6310917 6327487 +0.26%
BenchmarkRegexpMatchMedium_1K 114568 114763 +0.17%
BenchmarkRegexpMatchHard_1K 168977 169244 +0.16%
BenchmarkRevcomp 935294971 914060918 -2.27%
BenchmarkTemplate 145917123 148186096 +1.55%
Minux previous reported larger variations, but these were caused by
run-to-run noise, not repeatable slowdowns.
Actual code changes by Minux.
I only did the docs and the benchmarking.
LGTM=dvyukov, iant, minux
R=minux, josharian, iant, dave, bradfitz, dvyukov
CC=golang-codereviews
https://golang.org/cl/109050043
The putpclcdelta function set the DWARF line number PC to
s->value + pcline->pc, which is correct, but the code then set
the local variable pc to epc, which can be a different value.
This caused the next delta in the DWARF table to be wrong.
Fixes#8098.
LGTM=rsc
R=rsc
CC=golang-codereviews
https://golang.org/cl/104950045
Update #7980
This CL make the linker abort for the example program. For Go 1.4,
we need to find a general way to handle large memory model programs.
LGTM=dave, josharian, iant
R=iant, dave, josharian
CC=golang-codereviews
https://golang.org/cl/91500046
This should have been part of 36eb4a62fbb6,
but I later discovered that addresses are all wrong.
Appropriate test added now.
LGTM=r
R=golang-codereviews, r
CC=golang-codereviews
https://golang.org/cl/89470043
following on CL https://golang.org/cl/76810045 and
issue 7563, i now see there's another "remove(outfile)" a few
dozen lines down that also needs fixing.
LGTM=iant
R=golang-codereviews, iant
CC=0intro, golang-codereviews, r
https://golang.org/cl/89030043
Before the switch to liblink, the linkers accepted the -c flag
to print the call graph. This change restores the functionality.
This came in handy when I was trying to audit the use of SSE
instructions inside the Plan 9 note handler.
LGTM=rsc
R=golang-codereviews, bradfitz, rsc
CC=golang-codereviews
https://golang.org/cl/73990043
The new code is adapted from the Go 1.2 nosplit code,
but it does not have the bug reported in issue 7623:
g% go run nosplit.go
g% go1.2 run nosplit.go
BUG
rejected incorrectly:
main 0 call f; f 120
linker output:
# _/tmp/go-test-nosplit021064539
main.main: nosplit stack overflow
120 guaranteed after split check in main.main
112 on entry to main.f
-8 after main.f uses 120
g%
Fixes#6931.
Fixes#7623.
LGTM=iant
R=golang-codereviews, iant, ality
CC=golang-codereviews, r
https://golang.org/cl/88190043
Without the leaf bit, the linker cannot record
the correct frame size in the symbol table, and
then stack traces get mangled. (Only for ARM.)
Fixes#7338.
Fixes#7347.
LGTM=iant
R=iant
CC=golang-codereviews
https://golang.org/cl/88550043
linklookup uses hash(name, v) as the hash table index but then
only compares name to find a symbol to return.
If hash(name, v1) == hash(name, v2) for v1 != v2, the lookup
for v2 will return the symbol with v1.
The input routines assume that each symbol is found only once,
and then each symbol is added to a linked list, with the list header
in the symbol. Adding a symbol to such a list multiple times
short-circuits the list the second time it is added, causing symbols
to be dropped.
The liblink rewrite introduced an elegant, if inefficient, handling
of duplicated symbols by creating a dummy symbol to read the
duplicate into. The dummy symbols are named .dup with
sequential version numbers. With many .dup symbols, eventually
there will be a conflict, causing a duplicate list add, causing elided
symbols, causing a crash when calling one of the elided symbols.
The bug is old (2011) but could not have manifested until the
liblink rewrite introduced this heavily duplicated symbol .dup.
(See History section below.)
1. Correct the lookup function.
2. Since we want all the .dup symbols to be different, there's no
point in inserting them into the table. Call linknewsym directly,
avoiding the lookup function entirely.
3. Since nothing can refer to the .dup symbols, do not bother
adding them to the list of functions (textp) at all.
4. In lieu of a unit test, introduce additional consistency checks to
detect adding a symbol to a list multiple times. This would have
caught the short-circuit more directly, and it will detect a variety
of double-use bugs, including the one arising from the bad lookup.
Fixes#7749.
History
On April 9, 2011, I submitted CL 4383047, making ld 25% faster.
Much of the focus was on the hash table lookup function, and
one of the changes was to remove the s->version == v comparison [1].
I don't know if this was a simple editing error or if I reasoned that
same name but different v would yield a different hash slot and
so the name test alone sufficed. It is tempting to claim the former,
but it was probably the latter.
Because the hash is an iterated multiply+add, the version ends up
adding v*3ⁿ to the hash, where n is the length of the name.
A collision would need x*3ⁿ ≡ y*3ⁿ (mod 2²⁴ mod 100003),
or equivalently x*3ⁿ ≡ x*3ⁿ + (y-x)*3ⁿ (mod 2²⁴ mod 100003),
so collisions will actually be periodic: versions x and y collide
when d = y-x satisfies d*3ⁿ ≡ 0 (mod 2²⁴ mod 100003).
Since we allocate version numbers sequentially, this is actually
about the best case one could imagine: the collision rate is
much lower than if the hash were more random.
http://play.golang.org/p/TScD41c_hA computes the collision
period for various name lengths.
The most common symbol in the new linker is .dup, and for n=4
the period is maximized: the 100004th symbol is the first collision.
Unfortunately, there are programs with more duplicated symbols
than that.
In Go 1.2 and before, duplicate symbols were handled without
creating a dummy symbol, so this particular case for generating
many duplicate symbols could not happen. Go does not use
versioned symbols. Only C does; each input file gives a different
version to its static declarations. There just aren't enough C files
for this to come up in that context.
So the bug is old but the realization of the bug is new.
[1] https://golang.org/cl/4383047/diff/5001/src/cmd/ld/lib.c
LGTM=minux.ma, iant, dave
R=golang-codereviews, minux.ma, bradfitz, iant, dave
CC=golang-codereviews, r
https://golang.org/cl/87910047
This code never got updated after the liblink shuffle.
Tested by hand that it works and respects GOROOT_FINAL.
The discussion in issue 6963 suggests that perhaps we should
just drop runtime-gdb.py entirely, but I am not convinced
that is true. It was in Go 1.2 and I don't see a reason not to
keep it in Go 1.3. The fact that binaries have not been emitting
the reference was just a missed detail in the liblink conversion,
not part of a grand plan.
Fixes#7506.
Fixes#6963.
LGTM=bradfitz
R=golang-codereviews, bradfitz
CC=golang-codereviews, iant, r
https://golang.org/cl/87870048
OpenBSD is excluded from all the usual thread-local storage
code, not just emitting the tbss section in the external link .o
but emitting a PT_TLS section in an internally-linked executable.
I assume it just has no proper TLS support. Exclude it here too.
TBR=iant
CC=golang-codereviews
https://golang.org/cl/87900045
When I did the original 386 ports on Linux and OS X, I chose to
define GS-relative expressions like 4(GS) as relative to the actual
thread-local storage base, which was usually GS but might not be
(it might be FS, or it might be a different constant offset from GS or FS).
The original scope was limited but since then the rewrites have
gotten out of control. Sometimes GS is rewritten, sometimes FS.
Some ports do other rewrites to enable shared libraries and
other linking. At no point in the code is it clear whether you are
looking at the real GS/FS or some synthesized thing that will be
rewritten. The code manipulating all these is duplicated in many
places.
The first step to fixing issue 7719 is to make the code intelligible
again.
This CL adds an explicit TLS pseudo-register to the 386 and amd64.
As a register, TLS refers to the thread-local storage base, and it
can only be loaded into another register:
MOVQ TLS, AX
An offset from the thread-local storage base is written off(reg)(TLS*1).
Semantically it is off(reg), but the (TLS*1) annotation marks this as
indexing from the loaded TLS base. This emits a relocation so that
if the linker needs to adjust the offset, it can. For example:
MOVQ TLS, AX
MOVQ 8(AX)(TLS*1), CX // load m into CX
On systems that support direct access to the TLS memory, this
pair of instructions can be reduced to a direct TLS memory reference:
MOVQ 8(TLS), CX // load m into CX
The 2-instruction and 1-instruction forms correspond roughly to
ELF TLS initial exec mode and ELF TLS local exec mode, respectively.
Liblink applies this rewrite on systems that support the 1-instruction form.
The decision is made using only the operating system (and probably
the -shared flag, eventually), not the link mode. If some link modes
on a particular operating system require the 2-instruction form,
then all builds for that operating system will use the 2-instruction
form, so that the link mode decision can be delayed to link time.
Obviously it is late to be making changes like this, but I despair
of correcting issue 7719 and issue 7164 without it. To make sure
I am not changing existing behavior, I built a "hello world" program
for every GOOS/GOARCH combination we have and then worked
to make sure that the rewrite generates exactly the same binaries,
byte for byte. There are a handful of TODOs in the code marking
kludges to get the byte-for-byte property, but at least now I can
explain exactly how each binary is handled.
The targets I tested this way are:
darwin-386
darwin-amd64
dragonfly-386
dragonfly-amd64
freebsd-386
freebsd-amd64
freebsd-arm
linux-386
linux-amd64
linux-arm
nacl-386
nacl-amd64p32
netbsd-386
netbsd-amd64
openbsd-386
openbsd-amd64
plan9-386
plan9-amd64
solaris-amd64
windows-386
windows-amd64
There were four exceptions to the byte-for-byte goal:
windows-386 and windows-amd64 have a time stamp
at bytes 137 and 138 of the header.
darwin-386 and plan9-386 have five or six modified
bytes in the middle of the Go symbol table, caused by
editing comments in runtime/sys_{darwin,plan9}_386.s.
Fixes#7164.
LGTM=iant
R=iant, aram, minux.ma, dave
CC=golang-codereviews
https://golang.org/cl/87920043
The relocation and automatic variable types were using
arch-specific numbers. Introduce portable enumerations
instead.
To the best of my knowledge, these are the only arch-specific
bits left in the new object file format.
Remove now, before Go 1.3, because file formats are forever.
LGTM=iant
R=iant
CC=golang-codereviews
https://golang.org/cl/87670044
Cuts hello world by 70kB, because we don't write
those names into the symbol table.
Update #6853
LGTM=khr
R=khr
CC=golang-codereviews
https://golang.org/cl/80370045
The data field is the generic array that acts as a standin
for the keys and values arrays for the generic runtime code.
We want to substitute the keys and values arrays for the data
array, not just add keys and values in addition to it.
LGTM=iant
R=golang-codereviews, iant
CC=golang-codereviews
https://golang.org/cl/81160044
Reduce footprint of liveness bitmaps by about 5x.
1. Mark all liveness bitmap symbols as 4-byte aligned
(they were aligned to a larger size by default).
2. The bitmap data is a bitmap count n followed by n bitmaps.
Each bitmap begins with its own count m giving the number
of bits. All the m's are the same for the n bitmaps.
Emit this bitmap length once instead of n times.
3. Many bitmaps within a function have the same bit values,
but each call site was given a distinct bitmap. Merge duplicate
bitmaps so that no bitmap is written more than once.
4. Many functions end up with the same aggregate bitmap data.
We used to name the bitmap data funcname.gcargs and funcname.gclocals.
Instead, name it gclocals.<md5 of data> and mark it dupok so
that the linker coalesces duplicate sets. This cut the bitmap
data remaining after step 3 by 40%; I was not expecting it to
be quite so dramatic.
Applied to "go build -ldflags -w code.google.com/p/go.tools/cmd/godoc":
bitmaps pclntab binary on disk
before this CL 1326600 1985854 12738268
4-byte align 1154288 (0.87x) 1985854 (1.00x) 12566236 (0.99x)
one bitmap len 782528 (0.54x) 1985854 (1.00x) 12193500 (0.96x)
dedup bitmap 414748 (0.31x) 1948478 (0.98x) 11787996 (0.93x)
dedup bitmap set 245580 (0.19x) 1948478 (0.98x) 11620060 (0.91x)
While here, remove various dead blocks of code from plive.c.
Fixes#6929.
Fixes#7568.
LGTM=khr
R=khr
CC=golang-codereviews
https://golang.org/cl/83630044
e.g., don't delete /dev/null. this fix inspired by gnu libiberty,
unlink-if-ordinary.c.
Fixes#7563
LGTM=iant
R=golang-codereviews, iant, 0intro
CC=golang-codereviews, r
https://golang.org/cl/76810045
Old versions of DTrace (as those shipped in OS X and FreeBSD)
don't support unicode characters in symbol names. Replace '·'
to '.' to make DTrace happy.
Fixes#7493
LGTM=aram, rsc
R=aram, rsc, gobot, iant
CC=golang-codereviews
https://golang.org/cl/72280043
Acid can't produce a stack trace without .frame symbols.
Of course, it can only unwind through linear stacks but
this is still better than nothing. (I wrote an acid func
to do the full unwind a long time ago but lost it and
haven't worked up the courage to write it again).
Note that these will only be present in the native symbol
table for Plan 9 binaries.
LGTM=rsc
R=rsc
CC=golang-codereviews
https://golang.org/cl/72450045
Recently NetBSD starts to enforce this, and refuses to execute
the program if n is larger than the sum of entry sizes.
Before:
$ readelf -n ../bin/go.old
Notes at offset 0x00000bd0 with length 0x00000019:
Owner Data size Description
NetBSD 0x00000004 NT_VERSION (version)
readelf: Warning: corrupt note found at offset 18 into core notes
readelf: Warning: type: 0, namesize: 00000000, descsize: 00000000
$ readelf -n ../bin/go
Notes at offset 0x00000bd0 with length 0x00000018:
Owner Data size Description
NetBSD 0x00000004 NT_VERSION (version)
LGTM=iant
R=iant
CC=golang-codereviews
https://golang.org/cl/70710043
For non-closure functions, the context register is uninitialized
on entry and will not be used, but morestack saves it and then the
garbage collector treats it as live. This can be a source of memory
leaks if the context register points at otherwise dead memory.
Avoid this by introducing a parallel set of morestack functions
that clear the context register, and use those for the non-closure functions.
I hope this will help with some of the finalizer flakiness, but it probably won't.
Fixes#7244.
LGTM=dvyukov
R=khr, dvyukov
CC=golang-codereviews
https://golang.org/cl/71030044
warning: src/cmd/ld/pcln.c:184 more arguments than format INT
LGTM=iant
R=golang-codereviews, iant
CC=golang-codereviews
https://golang.org/cl/69870047
The pcln file number was being encoded incorrectly. The recorded delta was always against -1, not against the previous value.
Update #7369
This CL fixes the bad DWARF file numbers. It does not, however, fix the gdb continue-to-end bug.
LGTM=iant
R=rsc, minux.ma, iant
CC=golang-codereviews, graham
https://golang.org/cl/68960046
This CL replays the following one CL from the rsc-go13nacl repo.
This is the last replay CL: after this CL the main repo will have
everything the rsc-go13nacl repo did. Changes made to the main
repo after the rsc-go13nacl repo branched off probably mean that
NaCl doesn't actually work after this CL, but all the code is now moved
over and just needs to be redebugged.
---
cmd/6l, cmd/8l, cmd/ld: support for Native Client
See golang.org/s/go13nacl for design overview.
This CL is publicly visible but not CC'ed to golang-dev,
to avoid distracting from the preparation of the Go 1.2
release.
This CL and the others will be checked into my rsc-go13nacl
clone repo for now, and I will send CLs against the main
repo early in the Go 1.3 development.
R≡khr
https://golang.org/cl/15750044
---
LGTM=bradfitz, dave, iant
R=dave, bradfitz, iant
CC=golang-codereviews
https://golang.org/cl/69040044
Update #6853
Every function now has a gcargs and gclocals symbol
holding associated garbage collection information.
Put them all in the same meta-symbol as the go.func data
and then drop individual entries from symbol table.
Removing gcargs and gclocals reduces the size of a
typical binary by 10%.
LGTM=r
R=r
CC=golang-codereviews
https://golang.org/cl/65870044
Update #6853
Nothing reads the Plan 9 symbol table anymore.
The last holdout was 'go tool nm', but since being rewritten in Go
it uses the standard symbol table for the binary format
(ELF, Mach-O, PE) instead.
Removing the Plan 9 symbol table saves ~15% disk space
on most binaries.
Two supporting changes included in this CL:
debug/gosym: use Go 1.2 pclntab to synthesize func-only
symbol table when there is no Plan 9 symbol table
debug/elf, debug/macho, debug/pe: ignore final EOF from ReadAt
LGTM=r
R=r, bradfitz
CC=golang-codereviews
https://golang.org/cl/65740045
We now use the %A, %D, %P, and %R routines from liblink
across the board.
Fixes#7178.
Fixes#7055.
LGTM=iant
R=golang-codereviews, gobot, rsc, dave, iant, remyoudompheng
CC=golang-codereviews
https://golang.org/cl/49170043
Second part of the solaris/amd64 linker changes: relocation and symbol table.
LGTM=iant
R=golang-codereviews, iant
CC=golang-codereviews
https://golang.org/cl/61330043
rsc suggested that we split the whole linker changes into three parts.
This is the first one, mostly dealing with adding Hsolaris.
LGTM=iant
R=golang-codereviews, iant, dave
CC=golang-codereviews
https://golang.org/cl/54210050
In external link mode the linker explicitly adds the string
constant "runtime/cgo". It adds the string constant using the
same symbol name as the compiler, but a different format. The
compiler assumes that the string data immediately follows the
string header, but the linker puts the two in different
sections. The result is bad string data when the compiler
sees "runtime/cgo" used as a string constant.
The compiler assumption is in datastring in [568]g/gobj.c.
The linker layout is in addstrdata in ld/data.c. The compiler
assumption is valid for string literals. The linker is not
creating a string literal, so its assumption is also valid.
There are a few ways to avoid this problem. This patch fixes
it by only doing the fake import of runtime/cgo if necessary,
and by only creating the string symbol if necessary.
Fixes#7234.
LGTM=dvyukov
R=golang-codereviews, dvyukov, bradfitz
CC=golang-codereviews
https://golang.org/cl/58410043
The addition of TLS to ARM rewrote the MRC instruction
differently depending on whether we were using internal
or external linking mode. That's clearly not okay, since we
don't know that during compilation, which is when we now
generate the code. Also, because the change did not introduce
a real MRC instruction but instead just macro-expanded it
in the assembler, liblink is rewriting a WORD instruction that
may actually be looking for that specific constant, which would
lead to very unexpected results. It was also using one value
that happened to be 8 where a different value that also
happened to be 8 belonged. So the code was correct for those
values but not correct in general, and very confusing.
Throw it all away.
Replace with the following. There is a linker-provided symbol
runtime.tlsgm with a value (address) set to the offset from the
hardware-provided TLS base register to the g and m storage.
Any reference to that name emits an appropriate TLS relocation
to be resolved by either the internal linker or the external linker,
depending on the link mode. The relocation has exactly the
semantics of the R_ARM_TLS_LE32 relocation, which is what
the external linker provides.
This symbol is only used in two routines, runtime.load_gm and
runtime.save_gm. In both cases it is now used like this:
MRC 15, 0, R0, C13, C0, 3 // fetch TLS base pointer
MOVW $runtime·tlsgm(SB), R2
ADD R2, R0 // now R0 points at thread-local g+m storage
It is likely that this change breaks the generation of shared libraries
on ARM, because the MOVW needs to be rewritten to use the global
offset table and a different relocation type. But let's get the supported
functionality working again before we worry about unsupported
functionality.
LGTM=dave, iant
R=iant, dave
CC=golang-codereviews
https://golang.org/cl/56120043