diff --git a/src/pkg/reflect/all_test.go b/src/pkg/reflect/all_test.go index f616adaac3..bc9157672a 100644 --- a/src/pkg/reflect/all_test.go +++ b/src/pkg/reflect/all_test.go @@ -207,58 +207,46 @@ func testType(t *testing.T, i int, typ Type, want string) { func TestTypes(t *testing.T) { for i, tt := range typeTests { - testType(t, i, NewValue(tt.i).(*StructValue).Field(0).Type(), tt.s) + testType(t, i, NewValue(tt.i).Field(0).Type(), tt.s) } } func TestSet(t *testing.T) { for i, tt := range valueTests { v := NewValue(tt.i) - switch v := v.(type) { - case *IntValue: - switch v.Type().Kind() { - case Int: - v.Set(132) - case Int8: - v.Set(8) - case Int16: - v.Set(16) - case Int32: - v.Set(32) - case Int64: - v.Set(64) - } - case *UintValue: - switch v.Type().Kind() { - case Uint: - v.Set(132) - case Uint8: - v.Set(8) - case Uint16: - v.Set(16) - case Uint32: - v.Set(32) - case Uint64: - v.Set(64) - } - case *FloatValue: - switch v.Type().Kind() { - case Float32: - v.Set(256.25) - case Float64: - v.Set(512.125) - } - case *ComplexValue: - switch v.Type().Kind() { - case Complex64: - v.Set(532.125 + 10i) - case Complex128: - v.Set(564.25 + 1i) - } - case *StringValue: - v.Set("stringy cheese") - case *BoolValue: - v.Set(true) + switch v.Kind() { + case Int: + v.SetInt(132) + case Int8: + v.SetInt(8) + case Int16: + v.SetInt(16) + case Int32: + v.SetInt(32) + case Int64: + v.SetInt(64) + case Uint: + v.SetUint(132) + case Uint8: + v.SetUint(8) + case Uint16: + v.SetUint(16) + case Uint32: + v.SetUint(32) + case Uint64: + v.SetUint(64) + case Float32: + v.SetFloat(256.25) + case Float64: + v.SetFloat(512.125) + case Complex64: + v.SetComplex(532.125 + 10i) + case Complex128: + v.SetComplex(564.25 + 1i) + case String: + v.SetString("stringy cheese") + case Bool: + v.SetBool(true) } s := valueToString(v) if s != tt.s { @@ -270,52 +258,39 @@ func TestSet(t *testing.T) { func TestSetValue(t *testing.T) { for i, tt := range valueTests { v := NewValue(tt.i) - switch v := v.(type) { - case *IntValue: - switch v.Type().Kind() { - case Int: - v.SetValue(NewValue(int(132))) - case Int8: - v.SetValue(NewValue(int8(8))) - case Int16: - v.SetValue(NewValue(int16(16))) - case Int32: - v.SetValue(NewValue(int32(32))) - case Int64: - v.SetValue(NewValue(int64(64))) - } - case *UintValue: - switch v.Type().Kind() { - case Uint: - v.SetValue(NewValue(uint(132))) - case Uint8: - v.SetValue(NewValue(uint8(8))) - case Uint16: - v.SetValue(NewValue(uint16(16))) - case Uint32: - v.SetValue(NewValue(uint32(32))) - case Uint64: - v.SetValue(NewValue(uint64(64))) - } - case *FloatValue: - switch v.Type().Kind() { - case Float32: - v.SetValue(NewValue(float32(256.25))) - case Float64: - v.SetValue(NewValue(512.125)) - } - case *ComplexValue: - switch v.Type().Kind() { - case Complex64: - v.SetValue(NewValue(complex64(532.125 + 10i))) - case Complex128: - v.SetValue(NewValue(complex128(564.25 + 1i))) - } - - case *StringValue: - v.SetValue(NewValue("stringy cheese")) - case *BoolValue: - v.SetValue(NewValue(true)) + switch v.Kind() { + case Int: + v.Set(NewValue(int(132))) + case Int8: + v.Set(NewValue(int8(8))) + case Int16: + v.Set(NewValue(int16(16))) + case Int32: + v.Set(NewValue(int32(32))) + case Int64: + v.Set(NewValue(int64(64))) + case Uint: + v.Set(NewValue(uint(132))) + case Uint8: + v.Set(NewValue(uint8(8))) + case Uint16: + v.Set(NewValue(uint16(16))) + case Uint32: + v.Set(NewValue(uint32(32))) + case Uint64: + v.Set(NewValue(uint64(64))) + case Float32: + v.Set(NewValue(float32(256.25))) + case Float64: + v.Set(NewValue(512.125)) + case Complex64: + v.Set(NewValue(complex64(532.125 + 10i))) + case Complex128: + v.Set(NewValue(complex128(564.25 + 1i))) + case String: + v.Set(NewValue("stringy cheese")) + case Bool: + v.Set(NewValue(true)) } s := valueToString(v) if s != tt.s { @@ -350,7 +325,7 @@ func TestValueToString(t *testing.T) { func TestArrayElemSet(t *testing.T) { v := NewValue([10]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}) - v.(*ArrayValue).Elem(4).(*IntValue).Set(123) + v.Index(4).SetInt(123) s := valueToString(v) const want = "[10]int{1, 2, 3, 4, 123, 6, 7, 8, 9, 10}" if s != want { @@ -358,7 +333,7 @@ func TestArrayElemSet(t *testing.T) { } v = NewValue([]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}) - v.(*SliceValue).Elem(4).(*IntValue).Set(123) + v.Index(4).SetInt(123) s = valueToString(v) const want1 = "[]int{1, 2, 3, 4, 123, 6, 7, 8, 9, 10}" if s != want1 { @@ -371,14 +346,14 @@ func TestPtrPointTo(t *testing.T) { var i int32 = 1234 vip := NewValue(&ip) vi := NewValue(i) - vip.(*PtrValue).Elem().(*PtrValue).PointTo(vi) + vip.Elem().Set(vi.Addr()) if *ip != 1234 { t.Errorf("got %d, want 1234", *ip) } ip = nil - vp := NewValue(ip).(*PtrValue) - vp.PointTo(vp.Elem()) + vp := NewValue(ip) + vp.Set(Zero(vp.Type())) if ip != nil { t.Errorf("got non-nil (%p), want nil", ip) } @@ -388,7 +363,7 @@ func TestPtrSetNil(t *testing.T) { var i int32 = 1234 ip := &i vip := NewValue(&ip) - vip.(*PtrValue).Elem().(*PtrValue).Set(nil) + vip.Elem().Set(Zero(vip.Elem().Type())) if ip != nil { t.Errorf("got non-nil (%d), want nil", *ip) } @@ -397,7 +372,7 @@ func TestPtrSetNil(t *testing.T) { func TestMapSetNil(t *testing.T) { m := make(map[string]int) vm := NewValue(&m) - vm.(*PtrValue).Elem().(*MapValue).Set(nil) + vm.Elem().Set(Zero(vm.Elem().Type())) if m != nil { t.Errorf("got non-nil (%p), want nil", m) } @@ -406,16 +381,16 @@ func TestMapSetNil(t *testing.T) { func TestAll(t *testing.T) { testType(t, 1, Typeof((int8)(0)), "int8") - testType(t, 2, Typeof((*int8)(nil)).(*PtrType).Elem(), "int8") + testType(t, 2, Typeof((*int8)(nil)).Elem(), "int8") typ := Typeof((*struct { c chan *int32 d float32 })(nil)) testType(t, 3, typ, "*struct { c chan *int32; d float32 }") - etyp := typ.(*PtrType).Elem() + etyp := typ.Elem() testType(t, 4, etyp, "struct { c chan *int32; d float32 }") - styp := etyp.(*StructType) + styp := etyp f := styp.Field(0) testType(t, 5, f.Type, "chan *int32") @@ -432,22 +407,22 @@ func TestAll(t *testing.T) { typ = Typeof([32]int32{}) testType(t, 7, typ, "[32]int32") - testType(t, 8, typ.(*ArrayType).Elem(), "int32") + testType(t, 8, typ.Elem(), "int32") typ = Typeof((map[string]*int32)(nil)) testType(t, 9, typ, "map[string] *int32") - mtyp := typ.(*MapType) + mtyp := typ testType(t, 10, mtyp.Key(), "string") testType(t, 11, mtyp.Elem(), "*int32") typ = Typeof((chan<- string)(nil)) testType(t, 12, typ, "chan<- string") - testType(t, 13, typ.(*ChanType).Elem(), "string") + testType(t, 13, typ.Elem(), "string") // make sure tag strings are not part of element type typ = Typeof(struct { d []uint32 "TAG" - }{}).(*StructType).Field(0).Type + }{}).Field(0).Type testType(t, 14, typ, "[]uint32") } @@ -457,9 +432,9 @@ func TestInterfaceGet(t *testing.T) { } inter.e = 123.456 v1 := NewValue(&inter) - v2 := v1.(*PtrValue).Elem().(*StructValue).Field(0) + v2 := v1.Elem().Field(0) assert(t, v2.Type().String(), "interface { }") - i2 := v2.(*InterfaceValue).Interface() + i2 := v2.Interface() v3 := NewValue(i2) assert(t, v3.Type().String(), "float64") } @@ -470,9 +445,9 @@ func TestInterfaceValue(t *testing.T) { } inter.e = 123.456 v1 := NewValue(&inter) - v2 := v1.(*PtrValue).Elem().(*StructValue).Field(0) + v2 := v1.Elem().Field(0) assert(t, v2.Type().String(), "interface { }") - v3 := v2.(*InterfaceValue).Elem() + v3 := v2.Elem() assert(t, v3.Type().String(), "float64") i3 := v2.Interface() @@ -506,9 +481,9 @@ func TestAppend(t *testing.T) { e0[j] = NewValue(e) } // Convert extra from []int to *SliceValue. - e1 := NewValue(test.extra).(*SliceValue) + e1 := NewValue(test.extra) // Test Append. - a0 := NewValue(test.orig).(*SliceValue) + a0 := NewValue(test.orig) have0 := Append(a0, e0...).Interface().([]int) if !DeepEqual(have0, want) { t.Errorf("Append #%d: have %v, want %v", i, have0, want) @@ -521,7 +496,7 @@ func TestAppend(t *testing.T) { t.Errorf("Append #%d extraLen: have %v, want %v", i, len(test.extra), extraLen) } // Test AppendSlice. - a1 := NewValue(test.orig).(*SliceValue) + a1 := NewValue(test.orig) have1 := AppendSlice(a1, e1).Interface().([]int) if !DeepEqual(have1, want) { t.Errorf("AppendSlice #%d: have %v, want %v", i, have1, want) @@ -545,8 +520,8 @@ func TestCopy(t *testing.T) { t.Fatalf("b != c before test") } } - aa := NewValue(a).(*SliceValue) - ab := NewValue(b).(*SliceValue) + aa := NewValue(a) + ab := NewValue(b) for tocopy := 1; tocopy <= 7; tocopy++ { aa.SetLen(tocopy) Copy(ab, aa) @@ -660,7 +635,7 @@ func TestDeepEqual(t *testing.T) { func TestTypeof(t *testing.T) { for _, test := range deepEqualTests { v := NewValue(test.a) - if v == nil { + if !v.IsValid() { continue } typ := Typeof(test.a) @@ -715,8 +690,8 @@ func TestDeepEqualComplexStructInequality(t *testing.T) { func check2ndField(x interface{}, offs uintptr, t *testing.T) { - s := NewValue(x).(*StructValue) - f := s.Type().(*StructType).Field(1) + s := NewValue(x) + f := s.Type().Field(1) if f.Offset != offs { t.Error("mismatched offsets in structure alignment:", f.Offset, offs) } @@ -747,36 +722,22 @@ func TestAlignment(t *testing.T) { check2ndField(x1, uintptr(unsafe.Pointer(&x1.f))-uintptr(unsafe.Pointer(&x1)), t) } -type IsNiller interface { - IsNil() bool -} - func Nil(a interface{}, t *testing.T) { - n := NewValue(a).(*StructValue).Field(0).(IsNiller) + n := NewValue(a).Field(0) if !n.IsNil() { t.Errorf("%v should be nil", a) } } func NotNil(a interface{}, t *testing.T) { - n := NewValue(a).(*StructValue).Field(0).(IsNiller) + n := NewValue(a).Field(0) if n.IsNil() { t.Errorf("value of type %v should not be nil", NewValue(a).Type().String()) } } func TestIsNil(t *testing.T) { - // These do not implement IsNil - doNotNil := []interface{}{int(0), float32(0), struct{ a int }{}} - for _, ts := range doNotNil { - ty := Typeof(ts) - v := MakeZero(ty) - if _, ok := v.(IsNiller); ok { - t.Errorf("%s is nilable; should not be", ts) - } - } - - // These do implement IsNil. + // These implement IsNil. // Wrap in extra struct to hide interface type. doNil := []interface{}{ struct{ x *int }{}, @@ -787,11 +748,9 @@ func TestIsNil(t *testing.T) { struct{ x []string }{}, } for _, ts := range doNil { - ty := Typeof(ts).(*StructType).Field(0).Type - v := MakeZero(ty) - if _, ok := v.(IsNiller); !ok { - t.Errorf("%s %T is not nilable; should be", ts, v) - } + ty := Typeof(ts).Field(0).Type + v := Zero(ty) + v.IsNil() // panics if not okay to call } // Check the implementations @@ -844,7 +803,7 @@ func TestInterfaceExtraction(t *testing.T) { } s.w = os.Stdout - v := Indirect(NewValue(&s)).(*StructValue).Field(0).Interface() + v := Indirect(NewValue(&s)).Field(0).Interface() if v != s.w.(interface{}) { t.Error("Interface() on interface: ", v, s.w) } @@ -864,7 +823,7 @@ func TestInterfaceEditing(t *testing.T) { // and setting that copy to "bye" should // not change the value stored in i. - v.(*StringValue).Set("bye") + v.SetString("bye") if i.(string) != "hello" { t.Errorf(`Set("bye") changed i to %s`, i.(string)) } @@ -872,7 +831,7 @@ func TestInterfaceEditing(t *testing.T) { // the same should be true of smaller items. i = 123 v = NewValue(i) - v.(*IntValue).Set(234) + v.SetInt(234) if i.(int) != 123 { t.Errorf("Set(234) changed i to %d", i.(int)) } @@ -880,20 +839,20 @@ func TestInterfaceEditing(t *testing.T) { func TestNilPtrValueSub(t *testing.T) { var pi *int - if pv := NewValue(pi).(*PtrValue); pv.Elem() != nil { - t.Error("NewValue((*int)(nil)).(*PtrValue).Elem() != nil") + if pv := NewValue(pi); pv.Elem().IsValid() { + t.Error("NewValue((*int)(nil)).Elem().IsValid()") } } func TestMap(t *testing.T) { m := map[string]int{"a": 1, "b": 2} - mv := NewValue(m).(*MapValue) + mv := NewValue(m) if n := mv.Len(); n != len(m) { t.Errorf("Len = %d, want %d", n, len(m)) } - keys := mv.Keys() + keys := mv.MapKeys() i := 0 - newmap := MakeMap(mv.Type().(*MapType)) + newmap := MakeMap(mv.Type()) for k, v := range m { // Check that returned Keys match keys in range. // These aren't required to be in the same order, @@ -901,22 +860,22 @@ func TestMap(t *testing.T) { // the test easier. if i >= len(keys) { t.Errorf("Missing key #%d %q", i, k) - } else if kv := keys[i].(*StringValue); kv.Get() != k { - t.Errorf("Keys[%d] = %q, want %q", i, kv.Get(), k) + } else if kv := keys[i]; kv.String() != k { + t.Errorf("Keys[%q] = %d, want %d", i, kv.Int(), k) } i++ // Check that value lookup is correct. - vv := mv.Elem(NewValue(k)) - if vi := vv.(*IntValue).Get(); vi != int64(v) { + vv := mv.MapIndex(NewValue(k)) + if vi := vv.Int(); vi != int64(v) { t.Errorf("Key %q: have value %d, want %d", k, vi, v) } // Copy into new map. - newmap.SetElem(NewValue(k), NewValue(v)) + newmap.SetMapIndex(NewValue(k), NewValue(v)) } - vv := mv.Elem(NewValue("not-present")) - if vv != nil { + vv := mv.MapIndex(NewValue("not-present")) + if vv.IsValid() { t.Errorf("Invalid key: got non-nil value %s", valueToString(vv)) } @@ -932,14 +891,14 @@ func TestMap(t *testing.T) { } } - newmap.SetElem(NewValue("a"), nil) + newmap.SetMapIndex(NewValue("a"), Value{}) v, ok := newm["a"] if ok { t.Errorf("newm[\"a\"] = %d after delete", v) } - mv = NewValue(&m).(*PtrValue).Elem().(*MapValue) - mv.Set(nil) + mv = NewValue(&m).Elem() + mv.Set(Zero(mv.Type())) if m != nil { t.Errorf("mv.Set(nil) failed") } @@ -948,15 +907,15 @@ func TestMap(t *testing.T) { func TestChan(t *testing.T) { for loop := 0; loop < 2; loop++ { var c chan int - var cv *ChanValue + var cv Value // check both ways to allocate channels switch loop { case 1: c = make(chan int, 1) - cv = NewValue(c).(*ChanValue) + cv = NewValue(c) case 0: - cv = MakeChan(Typeof(c).(*ChanType), 1) + cv = MakeChan(Typeof(c), 1) c = cv.Interface().(chan int) } @@ -968,22 +927,22 @@ func TestChan(t *testing.T) { // Recv c <- 3 - if i, ok := cv.Recv(); i.(*IntValue).Get() != 3 || !ok { - t.Errorf("native send 3, reflect Recv %d, %t", i.(*IntValue).Get(), ok) + if i, ok := cv.Recv(); i.Int() != 3 || !ok { + t.Errorf("native send 3, reflect Recv %d, %t", i.Int(), ok) } // TryRecv fail val, ok := cv.TryRecv() - if val != nil || ok { + if val.IsValid() || ok { t.Errorf("TryRecv on empty chan: %s, %t", valueToString(val), ok) } // TryRecv success c <- 4 val, ok = cv.TryRecv() - if val == nil { + if !val.IsValid() { t.Errorf("TryRecv on ready chan got nil") - } else if i := val.(*IntValue).Get(); i != 4 || !ok { + } else if i := val.Int(); i != 4 || !ok { t.Errorf("native send 4, TryRecv %d, %t", i, ok) } @@ -1008,27 +967,27 @@ func TestChan(t *testing.T) { // Close c <- 123 cv.Close() - if i, ok := cv.Recv(); i.(*IntValue).Get() != 123 || !ok { - t.Errorf("send 123 then close; Recv %d, %t", i.(*IntValue).Get(), ok) + if i, ok := cv.Recv(); i.Int() != 123 || !ok { + t.Errorf("send 123 then close; Recv %d, %t", i.Int(), ok) } - if i, ok := cv.Recv(); i.(*IntValue).Get() != 0 || ok { - t.Errorf("after close Recv %d, %t", i.(*IntValue).Get(), ok) + if i, ok := cv.Recv(); i.Int() != 0 || ok { + t.Errorf("after close Recv %d, %t", i.Int(), ok) } } // check creation of unbuffered channel var c chan int - cv := MakeChan(Typeof(c).(*ChanType), 0) + cv := MakeChan(Typeof(c), 0) c = cv.Interface().(chan int) if cv.TrySend(NewValue(7)) { t.Errorf("TrySend on sync chan succeeded") } - if v, ok := cv.TryRecv(); v != nil || ok { + if v, ok := cv.TryRecv(); v.IsValid() || ok { t.Errorf("TryRecv on sync chan succeeded") } // len/cap - cv = MakeChan(Typeof(c).(*ChanType), 10) + cv = MakeChan(Typeof(c), 10) c = cv.Interface().(chan int) for i := 0; i < 3; i++ { c <- i @@ -1046,14 +1005,14 @@ func dummy(b byte, c int, d byte) (i byte, j int, k byte) { } func TestFunc(t *testing.T) { - ret := NewValue(dummy).(*FuncValue).Call([]Value{NewValue(byte(10)), NewValue(20), NewValue(byte(30))}) + ret := NewValue(dummy).Call([]Value{NewValue(byte(10)), NewValue(20), NewValue(byte(30))}) if len(ret) != 3 { t.Fatalf("Call returned %d values, want 3", len(ret)) } - i := ret[0].(*UintValue).Get() - j := ret[1].(*IntValue).Get() - k := ret[2].(*UintValue).Get() + i := byte(ret[0].Uint()) + j := int(ret[1].Int()) + k := byte(ret[2].Uint()) if i != 10 || j != 20 || k != 30 { t.Errorf("Call returned %d, %d, %d; want 10, 20, 30", i, j, k) } @@ -1068,30 +1027,30 @@ func (p Point) Dist(scale int) int { return p.x*p.x*scale + p.y*p.y*scale } func TestMethod(t *testing.T) { // Non-curried method of type. p := Point{3, 4} - i := Typeof(p).Method(0).Func.Call([]Value{NewValue(p), NewValue(10)})[0].(*IntValue).Get() + i := Typeof(p).Method(0).Func.Call([]Value{NewValue(p), NewValue(10)})[0].Int() if i != 250 { t.Errorf("Type Method returned %d; want 250", i) } - i = Typeof(&p).Method(0).Func.Call([]Value{NewValue(&p), NewValue(10)})[0].(*IntValue).Get() + i = Typeof(&p).Method(0).Func.Call([]Value{NewValue(&p), NewValue(10)})[0].Int() if i != 250 { t.Errorf("Pointer Type Method returned %d; want 250", i) } // Curried method of value. - i = NewValue(p).Method(0).Call([]Value{NewValue(10)})[0].(*IntValue).Get() + i = NewValue(p).Method(0).Call([]Value{NewValue(10)})[0].Int() if i != 250 { t.Errorf("Value Method returned %d; want 250", i) } // Curried method of pointer. - i = NewValue(&p).Method(0).Call([]Value{NewValue(10)})[0].(*IntValue).Get() + i = NewValue(&p).Method(0).Call([]Value{NewValue(10)})[0].Int() if i != 250 { t.Errorf("Value Method returned %d; want 250", i) } // Curried method of pointer to value. - i = NewValue(p).Addr().Method(0).Call([]Value{NewValue(10)})[0].(*IntValue).Get() + i = NewValue(p).Addr().Method(0).Call([]Value{NewValue(10)})[0].Int() if i != 250 { t.Errorf("Value Method returned %d; want 250", i) } @@ -1105,8 +1064,8 @@ func TestMethod(t *testing.T) { Dist(int) int } }{p} - pv := NewValue(s).(*StructValue).Field(0) - i = pv.Method(0).Call([]Value{NewValue(10)})[0].(*IntValue).Get() + pv := NewValue(s).Field(0) + i = pv.Method(0).Call([]Value{NewValue(10)})[0].Int() if i != 250 { t.Errorf("Interface Method returned %d; want 250", i) } @@ -1121,19 +1080,19 @@ func TestInterfaceSet(t *testing.T) { Dist(int) int } } - sv := NewValue(&s).(*PtrValue).Elem().(*StructValue) - sv.Field(0).(*InterfaceValue).Set(NewValue(p)) + sv := NewValue(&s).Elem() + sv.Field(0).Set(NewValue(p)) if q := s.I.(*Point); q != p { t.Errorf("i: have %p want %p", q, p) } - pv := sv.Field(1).(*InterfaceValue) + pv := sv.Field(1) pv.Set(NewValue(p)) if q := s.P.(*Point); q != p { t.Errorf("i: have %p want %p", q, p) } - i := pv.Method(0).Call([]Value{NewValue(10)})[0].(*IntValue).Get() + i := pv.Method(0).Call([]Value{NewValue(10)})[0].Int() if i != 250 { t.Errorf("Interface Method returned %d; want 250", i) } @@ -1148,7 +1107,7 @@ func TestAnonymousFields(t *testing.T) { var field StructField var ok bool var t1 T1 - type1 := Typeof(t1).(*StructType) + type1 := Typeof(t1) if field, ok = type1.FieldByName("int"); !ok { t.Error("no field 'int'") } @@ -1232,7 +1191,7 @@ var fieldTests = []FTest{ func TestFieldByIndex(t *testing.T) { for _, test := range fieldTests { - s := Typeof(test.s).(*StructType) + s := Typeof(test.s) f := s.FieldByIndex(test.index) if f.Name != "" { if test.index != nil { @@ -1247,8 +1206,8 @@ func TestFieldByIndex(t *testing.T) { } if test.value != 0 { - v := NewValue(test.s).(*StructValue).FieldByIndex(test.index) - if v != nil { + v := NewValue(test.s).FieldByIndex(test.index) + if v.IsValid() { if x, ok := v.Interface().(int); ok { if x != test.value { t.Errorf("%s%v is %d; want %d", s.Name(), test.index, x, test.value) @@ -1265,7 +1224,7 @@ func TestFieldByIndex(t *testing.T) { func TestFieldByName(t *testing.T) { for _, test := range fieldTests { - s := Typeof(test.s).(*StructType) + s := Typeof(test.s) f, found := s.FieldByName(test.name) if found { if test.index != nil { @@ -1287,8 +1246,8 @@ func TestFieldByName(t *testing.T) { } if test.value != 0 { - v := NewValue(test.s).(*StructValue).FieldByName(test.name) - if v != nil { + v := NewValue(test.s).FieldByName(test.name) + if v.IsValid() { if x, ok := v.Interface().(int); ok { if x != test.value { t.Errorf("%s.%s is %d; want %d", s.Name(), test.name, x, test.value) @@ -1312,10 +1271,10 @@ func TestImportPath(t *testing.T) { func TestDotDotDot(t *testing.T) { // Test example from FuncType.DotDotDot documentation. var f func(x int, y ...float64) - typ := Typeof(f).(*FuncType) + typ := Typeof(f) if typ.NumIn() == 2 && typ.In(0) == Typeof(int(0)) { - sl, ok := typ.In(1).(*SliceType) - if ok { + sl := typ.In(1) + if sl.Kind() == Slice { if sl.Elem() == Typeof(0.0) { // ok return @@ -1346,11 +1305,11 @@ func (*outer) m() {} func TestNestedMethods(t *testing.T) { typ := Typeof((*outer)(nil)) - if typ.NumMethod() != 1 || typ.Method(0).Func.Get() != NewValue((*outer).m).(*FuncValue).Get() { + if typ.NumMethod() != 1 || typ.Method(0).Func.Pointer() != NewValue((*outer).m).Pointer() { t.Errorf("Wrong method table for outer: (m=%p)", (*outer).m) for i := 0; i < typ.NumMethod(); i++ { m := typ.Method(i) - t.Errorf("\t%d: %s %#x\n", i, m.Name, m.Func.Get()) + t.Errorf("\t%d: %s %#x\n", i, m.Name, m.Func.Pointer()) } } } @@ -1370,21 +1329,21 @@ func (i *innerInt) m() int { func TestEmbeddedMethods(t *testing.T) { typ := Typeof((*outerInt)(nil)) - if typ.NumMethod() != 1 || typ.Method(0).Func.Get() != NewValue((*outerInt).m).(*FuncValue).Get() { + if typ.NumMethod() != 1 || typ.Method(0).Func.Pointer() != NewValue((*outerInt).m).Pointer() { t.Errorf("Wrong method table for outerInt: (m=%p)", (*outerInt).m) for i := 0; i < typ.NumMethod(); i++ { m := typ.Method(i) - t.Errorf("\t%d: %s %#x\n", i, m.Name, m.Func.Get()) + t.Errorf("\t%d: %s %#x\n", i, m.Name, m.Func.Pointer()) } } i := &innerInt{3} - if v := NewValue(i).Method(0).Call(nil)[0].(*IntValue).Get(); v != 3 { + if v := NewValue(i).Method(0).Call(nil)[0].Int(); v != 3 { t.Errorf("i.m() = %d, want 3", v) } o := &outerInt{1, innerInt{2}} - if v := NewValue(o).Method(0).Call(nil)[0].(*IntValue).Get(); v != 2 { + if v := NewValue(o).Method(0).Call(nil)[0].Int(); v != 2 { t.Errorf("i.m() = %d, want 2", v) } @@ -1402,7 +1361,7 @@ func TestPtrTo(t *testing.T) { typ = PtrTo(typ) } for i = 0; i < 100; i++ { - typ = typ.(*PtrType).Elem() + typ = typ.Elem() } if typ != Typeof(i) { t.Errorf("after 100 PtrTo and Elem, have %s, want %s", typ, Typeof(i)) @@ -1415,11 +1374,11 @@ func TestAddr(t *testing.T) { } v := NewValue(&p) - v = v.(*PtrValue).Elem() + v = v.Elem() v = v.Addr() - v = v.(*PtrValue).Elem() - v = v.(*StructValue).Field(0) - v.(*IntValue).Set(2) + v = v.Elem() + v = v.Field(0) + v.SetInt(2) if p.X != 2 { t.Errorf("Addr.Elem.Set failed to set value") } @@ -1428,12 +1387,12 @@ func TestAddr(t *testing.T) { // Exercises generation of PtrTypes not present in the binary. v = NewValue(&p) v = v.Addr() - v = v.(*PtrValue).Elem() - v = v.(*PtrValue).Elem() + v = v.Elem() + v = v.Elem() v = v.Addr() - v = v.(*PtrValue).Elem() - v = v.(*StructValue).Field(0) - v.(*IntValue).Set(3) + v = v.Elem() + v = v.Field(0) + v.SetInt(3) if p.X != 3 { t.Errorf("Addr.Elem.Set failed to set value") } @@ -1443,9 +1402,9 @@ func TestAddr(t *testing.T) { v = NewValue(p) v0 := v v = v.Addr() - v = v.(*PtrValue).Elem() - v = v.(*StructValue).Field(0) - v.(*IntValue).Set(4) + v = v.Elem() + v = v.Field(0) + v.SetInt(4) if p.X != 3 { // should be unchanged from last time t.Errorf("somehow value Set changed original p") } diff --git a/src/pkg/reflect/deepequal.go b/src/pkg/reflect/deepequal.go index c9beec5066..f5a7814601 100644 --- a/src/pkg/reflect/deepequal.go +++ b/src/pkg/reflect/deepequal.go @@ -22,8 +22,8 @@ type visit struct { // comparisons that have already been seen, which allows short circuiting on // recursive types. func deepValueEqual(v1, v2 Value, visited map[uintptr]*visit, depth int) bool { - if v1 == nil || v2 == nil { - return v1 == v2 + if !v1.IsValid() || !v2.IsValid() { + return v1.IsValid() == v2.IsValid() } if v1.Type() != v2.Type() { return false @@ -56,57 +56,47 @@ func deepValueEqual(v1, v2 Value, visited map[uintptr]*visit, depth int) bool { // Remember for later. visited[h] = &visit{addr1, addr2, typ, seen} - switch v := v1.(type) { - case *ArrayValue: - arr1 := v - arr2 := v2.(*ArrayValue) - if arr1.Len() != arr2.Len() { + switch v1.Kind() { + case Array: + if v1.Len() != v2.Len() { return false } - for i := 0; i < arr1.Len(); i++ { - if !deepValueEqual(arr1.Elem(i), arr2.Elem(i), visited, depth+1) { + for i := 0; i < v1.Len(); i++ { + if !deepValueEqual(v1.Index(i), v2.Index(i), visited, depth+1) { return false } } return true - case *SliceValue: - arr1 := v - arr2 := v2.(*SliceValue) - if arr1.Len() != arr2.Len() { + case Slice: + if v1.Len() != v2.Len() { return false } - for i := 0; i < arr1.Len(); i++ { - if !deepValueEqual(arr1.Elem(i), arr2.Elem(i), visited, depth+1) { + for i := 0; i < v1.Len(); i++ { + if !deepValueEqual(v1.Index(i), v2.Index(i), visited, depth+1) { return false } } return true - case *InterfaceValue: - i1 := v.Interface() - i2 := v2.Interface() - if i1 == nil || i2 == nil { - return i1 == i2 + case Interface: + if v1.IsNil() || v2.IsNil() { + return v1.IsNil() == v2.IsNil() } - return deepValueEqual(NewValue(i1), NewValue(i2), visited, depth+1) - case *PtrValue: - return deepValueEqual(v.Elem(), v2.(*PtrValue).Elem(), visited, depth+1) - case *StructValue: - struct1 := v - struct2 := v2.(*StructValue) - for i, n := 0, v.NumField(); i < n; i++ { - if !deepValueEqual(struct1.Field(i), struct2.Field(i), visited, depth+1) { + return deepValueEqual(v1.Elem(), v2.Elem(), visited, depth+1) + case Ptr: + return deepValueEqual(v1.Elem(), v2.Elem(), visited, depth+1) + case Struct: + for i, n := 0, v1.NumField(); i < n; i++ { + if !deepValueEqual(v1.Field(i), v2.Field(i), visited, depth+1) { return false } } return true - case *MapValue: - map1 := v - map2 := v2.(*MapValue) - if map1.Len() != map2.Len() { + case Map: + if v1.Len() != v2.Len() { return false } - for _, k := range map1.Keys() { - if !deepValueEqual(map1.Elem(k), map2.Elem(k), visited, depth+1) { + for _, k := range v1.MapKeys() { + if !deepValueEqual(v1.MapIndex(k), v2.MapIndex(k), visited, depth+1) { return false } } diff --git a/src/pkg/reflect/tostring_test.go b/src/pkg/reflect/tostring_test.go index a1487fdd2f..5f5c52b778 100644 --- a/src/pkg/reflect/tostring_test.go +++ b/src/pkg/reflect/tostring_test.go @@ -17,29 +17,29 @@ import ( // For debugging only. func valueToString(val Value) string { var str string - if val == nil { - return "" + if !val.IsValid() { + return "" } typ := val.Type() - switch val := val.(type) { - case *IntValue: - return strconv.Itoa64(val.Get()) - case *UintValue: - return strconv.Uitoa64(val.Get()) - case *FloatValue: - return strconv.Ftoa64(float64(val.Get()), 'g', -1) - case *ComplexValue: - c := val.Get() - return strconv.Ftoa64(float64(real(c)), 'g', -1) + "+" + strconv.Ftoa64(float64(imag(c)), 'g', -1) + "i" - case *StringValue: - return val.Get() - case *BoolValue: - if val.Get() { + switch val.Kind() { + case Int, Int8, Int16, Int32, Int64: + return strconv.Itoa64(val.Int()) + case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr: + return strconv.Uitoa64(val.Uint()) + case Float32, Float64: + return strconv.Ftoa64(val.Float(), 'g', -1) + case Complex64, Complex128: + c := val.Complex() + return strconv.Ftoa64(real(c), 'g', -1) + "+" + strconv.Ftoa64(imag(c), 'g', -1) + "i" + case String: + return val.String() + case Bool: + if val.Bool() { return "true" } else { return "false" } - case *PtrValue: + case Ptr: v := val str = typ.String() + "(" if v.IsNil() { @@ -49,7 +49,7 @@ func valueToString(val Value) string { } str += ")" return str - case ArrayOrSliceValue: + case Array, Slice: v := val str += typ.String() str += "{" @@ -57,22 +57,22 @@ func valueToString(val Value) string { if i > 0 { str += ", " } - str += valueToString(v.Elem(i)) + str += valueToString(v.Index(i)) } str += "}" return str - case *MapValue: - t := typ.(*MapType) + case Map: + t := typ str = t.String() str += "{" str += "" str += "}" return str - case *ChanValue: + case Chan: str = typ.String() return str - case *StructValue: - t := typ.(*StructType) + case Struct: + t := typ v := val str += t.String() str += "{" @@ -84,11 +84,11 @@ func valueToString(val Value) string { } str += "}" return str - case *InterfaceValue: + case Interface: return typ.String() + "(" + valueToString(val.Elem()) + ")" - case *FuncValue: + case Func: v := val - return typ.String() + "(" + strconv.Itoa64(int64(v.Get())) + ")" + return typ.String() + "(" + strconv.Uitoa64(uint64(v.Pointer())) + ")" default: panic("valueToString: can't print type " + typ.String()) } diff --git a/src/pkg/reflect/type.go b/src/pkg/reflect/type.go index 2cc1f576aa..9f3e0bf682 100644 --- a/src/pkg/reflect/type.go +++ b/src/pkg/reflect/type.go @@ -5,14 +5,11 @@ // The reflect package implements run-time reflection, allowing a program to // manipulate objects with arbitrary types. The typical use is to take a // value with static type interface{} and extract its dynamic type -// information by calling Typeof, which returns an object with interface -// type Type. That contains a pointer to a struct of type *StructType, -// *IntType, etc. representing the details of the underlying type. A type -// switch or type assertion can reveal which. +// information by calling Typeof, which returns a Type. // -// A call to NewValue creates a Value representing the run-time data; it -// contains a *StructValue, *IntValue, etc. MakeZero takes a Type and -// returns a Value representing a zero value for that type. +// A call to NewValue returns a Value representing the run-time data. +// Zero takes a Type and returns a Value representing a zero value +// for that type. package reflect import ( @@ -22,6 +19,186 @@ import ( "unsafe" ) +// Type is the representation of a Go type. +// +// Not all methods apply to all kinds of types. Restrictions, +// if any, are noted in the documentation for each method. +// Use the Kind method to find out the kind of type before +// calling kind-specific methods. Calling a method +// inappropriate to the kind of type causes a run-time panic. +type Type interface { + // Methods applicable to all types. + + // Align returns the alignment in bytes of a value of + // this type when allocated in memory. + Align() int + + // FieldAlign returns the alignment in bytes of a value of + // this type when used as a field in a struct. + FieldAlign() int + + // Method returns the i'th method in the type's method set. + // It panics if i is not in the range [0, NumMethod()). + // + // For a non-interface type T or *T, the returned Method's Type and Func + // fields describe a function whose first argument is the receiver. + // + // For an interface type, the returned Method's Type field gives the + // method signature, without a receiver, and the Func field is nil. + Method(int) Method + + // NumMethods returns the number of methods in the type's method set. + NumMethod() int + + // Name returns the type's name within its package. + // It returns an empty string for unnamed types. + Name() string + + // PkgPath returns the type's package path. + // The package path is a full package import path like "container/vector". + // PkgPath returns an empty string for unnamed types. + PkgPath() string + + // Size returns the number of bytes needed to store + // a value of the given type; it is analogous to unsafe.Sizeof. + Size() uintptr + + // String returns a string representation of the type. + // The string representation may use shortened package names + // (e.g., vector instead of "container/vector") and is not + // guaranteed to be unique among types. To test for equality, + // compare the Types directly. + String() string + + // Kind returns the specific kind of this type. + Kind() Kind + + // Methods applicable only to some types, depending on Kind. + // The methods allowed for each kind are: + // + // Int*, Uint*, Float*, Complex*: Bits + // Array: Elem, Len + // Chan: ChanDir, Elem + // Func: In, NumIn, Out, NumOut, IsVariadic. + // Map: Key, Elem + // Ptr: Elem + // Slice: Elem + // Struct: Field, FieldByIndex, FieldByName, FieldByNameFunc, NumField + + // Bits returns the size of the type in bits. + // It panics if the type's Kind is not one of the + // sized or unsized Int, Uint, Float, or Complex kinds. + Bits() int + + // ChanDir returns a channel type's direction. + // It panics if the type's Kind is not Chan. + ChanDir() ChanDir + + // IsVariadic returns true if a function type's final input parameter + // is a "..." parameter. If so, t.In(t.NumIn() - 1) returns the parameter's + // implicit actual type []T. + // + // For concreteness, if t represents func(x int, y ... float), then + // + // t.NumIn() == 2 + // t.In(0) is the reflect.Type for "int" + // t.In(1) is the reflect.Type for "[]float" + // t.IsVariadic() == true + // + // IsVariadic panics if the type's Kind is not Func. + IsVariadic() bool + + // Elem returns a type's element type. + // It panics if the type's Kind is not Array, Chan, Map, Ptr, or Slice. + Elem() Type + + // Field returns a struct type's i'th field. + // It panics if the type's Kind is not Struct. + // It panics if i is not in the range [0, NumField()). + Field(i int) StructField + + // FieldByIndex returns the nested field corresponding + // to the index sequence. It is equivalent to calling Field + // successively for each index i. + // It panics if the type's Kind is not Struct. + FieldByIndex(index []int) StructField + + // FieldByName returns the struct field with the given name + // and a boolean indicating if the field was found. + FieldByName(name string) (StructField, bool) + + // FieldByNameFunc returns the first struct field with a name + // that satisfies the match function and a boolean indicating if + // the field was found. + FieldByNameFunc(match func(string) bool) (StructField, bool) + + // In returns the type of a function type's i'th input parameter. + // It panics if the type's Kind is not Func. + // It panics if i is not in the range [0, NumIn()). + In(i int) Type + + // Key returns a map type's key type. + // It panics if the type's Kind is not Map. + Key() Type + + // Len returns an array type's length. + // It panics if the type's Kind is not Array. + Len() int + + // NumField returns a struct type's field count. + // It panics if the type's Kind is not Struct. + NumField() int + + // NumIn returns a function type's input parameter count. + // It panics if the type's Kind is not Func. + NumIn() int + + // NumOut returns a function type's output parameter count. + // It panics if the type's Kind is not Func. + NumOut() int + + // Out returns the type of a function type's i'th output parameter. + // It panics if the type's Kind is not Func. + // It panics if i is not in the range [0, NumOut()). + Out(i int) Type + + uncommon() *uncommonType +} + +// A Kind represents the specific kind of type that a Type represents. +// The zero Kind is not a valid kind. +type Kind uint8 + +const ( + Invalid Kind = iota + Bool + Int + Int8 + Int16 + Int32 + Int64 + Uint + Uint8 + Uint16 + Uint32 + Uint64 + Uintptr + Float32 + Float64 + Complex64 + Complex128 + Array + Chan + Func + Interface + Map + Ptr + Slice + String + Struct + UnsafePointer +) + /* * Copy of data structures from ../runtime/type.go. * For comments, see the ones in that file. @@ -67,48 +244,6 @@ type uncommonType struct { methods []method } -// BoolType represents a boolean type. -type BoolType struct { - commonType "bool" -} - -// FloatType represents a float type. -type FloatType struct { - commonType "float" -} - -// ComplexType represents a complex type. -type ComplexType struct { - commonType "complex" -} - -// IntType represents a signed integer type. -type IntType struct { - commonType "int" -} - -// UintType represents a uint type. -type UintType struct { - commonType "uint" -} - -// StringType represents a string type. -type StringType struct { - commonType "string" -} - -// UnsafePointerType represents an unsafe.Pointer type. -type UnsafePointerType struct { - commonType "unsafe.Pointer" -} - -// ArrayType represents a fixed array type. -type ArrayType struct { - commonType "array" - elem *runtime.Type - len uintptr -} - // ChanDir represents a channel type's direction. type ChanDir int @@ -118,57 +253,61 @@ const ( BothDir = RecvDir | SendDir ) -// ChanType represents a channel type. -type ChanType struct { + +// arrayType represents a fixed array type. +type arrayType struct { + commonType "array" + elem *runtime.Type + len uintptr +} + +// chanType represents a channel type. +type chanType struct { commonType "chan" elem *runtime.Type dir uintptr } -// FuncType represents a function type. -type FuncType struct { +// funcType represents a function type. +type funcType struct { commonType "func" dotdotdot bool in []*runtime.Type out []*runtime.Type } -// Method on interface type +// imethod represents a method on an interface type type imethod struct { name *string pkgPath *string typ *runtime.Type } -// InterfaceType represents an interface type. -type InterfaceType struct { +// interfaceType represents an interface type. +type interfaceType struct { commonType "interface" methods []imethod } -// MapType represents a map type. -type MapType struct { +// mapType represents a map type. +type mapType struct { commonType "map" key *runtime.Type elem *runtime.Type } -// PtrType represents a pointer type. -type PtrType struct { +// ptrType represents a pointer type. +type ptrType struct { commonType "ptr" elem *runtime.Type } -// SliceType represents a slice type. -type SliceType struct { +// sliceType represents a slice type. +type sliceType struct { commonType "slice" elem *runtime.Type } -// arrayOrSliceType is an unexported method that guarantees only -// arrays and slices implement ArrayOrSliceType. -func (*SliceType) arrayOrSliceType() {} - // Struct field type structField struct { name *string @@ -178,8 +317,8 @@ type structField struct { offset uintptr } -// StructType represents a struct type. -type StructType struct { +// structType represents a struct type. +type structType struct { commonType "struct" fields []structField } @@ -194,106 +333,10 @@ type StructType struct { type Method struct { PkgPath string // empty for uppercase Name Name string - Type *FuncType - Func *FuncValue + Type Type + Func Value } -// Type is the runtime representation of a Go type. -// Every type implements the methods listed here. -// Some types implement additional interfaces; -// use a type switch to find out what kind of type a Type is. -// Each type in a program has a unique Type, so == on Types -// corresponds to Go's type equality. -type Type interface { - // PkgPath returns the type's package path. - // The package path is a full package import path like "container/vector". - // PkgPath returns an empty string for unnamed types. - PkgPath() string - - // Name returns the type's name within its package. - // Name returns an empty string for unnamed types. - Name() string - - // String returns a string representation of the type. - // The string representation may use shortened package names - // (e.g., vector instead of "container/vector") and is not - // guaranteed to be unique among types. To test for equality, - // compare the Types directly. - String() string - - // Size returns the number of bytes needed to store - // a value of the given type; it is analogous to unsafe.Sizeof. - Size() uintptr - - // Bits returns the size of the type in bits. - // It is intended for use with numeric types and may overflow - // when used for composite types. - Bits() int - - // Align returns the alignment of a value of this type - // when allocated in memory. - Align() int - - // FieldAlign returns the alignment of a value of this type - // when used as a field in a struct. - FieldAlign() int - - // Kind returns the specific kind of this type. - Kind() Kind - - // Method returns the i'th method in the type's method set. - // - // For a non-interface type T or *T, the returned Method's Type and Func - // fields describe a function whose first argument is the receiver. - // - // For an interface type, the returned Method's Type field gives the - // method signature, without a receiver, and the Func field is nil. - Method(int) Method - - // NumMethods returns the number of methods in the type's method set. - NumMethod() int - - common() *commonType - uncommon() *uncommonType -} - -// A Kind represents the specific kind of type that a Type represents. -// For numeric types, the Kind gives more information than the Type's -// dynamic type. For example, the Type of a float32 is FloatType, but -// the Kind is Float32. -// -// The zero Kind is not a valid kind. -type Kind uint8 - -const ( - Bool Kind = 1 + iota - Int - Int8 - Int16 - Int32 - Int64 - Uint - Uint8 - Uint16 - Uint32 - Uint64 - Uintptr - Float32 - Float64 - Complex64 - Complex128 - Array - Chan - Func - Interface - Map - Ptr - Slice - String - Struct - UnsafePointer -) - // High bit says whether type has // embedded pointers,to help garbage collector. const kindMask = 0x7f @@ -306,6 +349,7 @@ func (k Kind) String() string { } var kindNames = []string{ + Invalid: "invalid", Bool: "bool", Int: "int", Int8: "int8", @@ -352,11 +396,24 @@ func (t *uncommonType) Name() string { return *t.name } +func (t *commonType) toType() Type { + if t == nil { + return nil + } + return t +} + func (t *commonType) String() string { return *t.string } func (t *commonType) Size() uintptr { return t.size } -func (t *commonType) Bits() int { return int(t.size * 8) } +func (t *commonType) Bits() int { + k := t.Kind() + if k < Int || k > Complex128 { + panic("reflect: Bits of non-arithmetic Type") + } + return int(t.size) * 8 +} func (t *commonType) Align() int { return int(t.align) } @@ -377,9 +434,9 @@ func (t *uncommonType) Method(i int) (m Method) { if p.pkgPath != nil { m.PkgPath = *p.pkgPath } - m.Type = toType(*p.typ).(*FuncType) + m.Type = toType(p.typ) fn := p.tfn - m.Func = &FuncValue{value: value{m.Type, addr(&fn), canSet}} + m.Func = Value{&funcValue{value: value{m.Type, addr(&fn), canSet}}} return } @@ -393,29 +450,154 @@ func (t *uncommonType) NumMethod() int { // TODO(rsc): 6g supplies these, but they are not // as efficient as they could be: they have commonType // as the receiver instead of *commonType. -func (t *commonType) NumMethod() int { return t.uncommonType.NumMethod() } +func (t *commonType) NumMethod() int { + if t.Kind() == Interface { + tt := (*interfaceType)(unsafe.Pointer(t)) + return tt.NumMethod() + } + return t.uncommonType.NumMethod() +} -func (t *commonType) Method(i int) (m Method) { return t.uncommonType.Method(i) } +func (t *commonType) Method(i int) (m Method) { + if t.Kind() == Interface { + tt := (*interfaceType)(unsafe.Pointer(t)) + return tt.Method(i) + } + return t.uncommonType.Method(i) +} -func (t *commonType) PkgPath() string { return t.uncommonType.PkgPath() } +func (t *commonType) PkgPath() string { + return t.uncommonType.PkgPath() +} -func (t *commonType) Name() string { return t.uncommonType.Name() } +func (t *commonType) Name() string { + return t.uncommonType.Name() +} -// Len returns the number of elements in the array. -func (t *ArrayType) Len() int { return int(t.len) } +func (t *commonType) ChanDir() ChanDir { + if t.Kind() != Chan { + panic("reflect: ChanDir of non-chan type") + } + tt := (*chanType)(unsafe.Pointer(t)) + return ChanDir(tt.dir) +} -// Elem returns the type of the array's elements. -func (t *ArrayType) Elem() Type { return toType(*t.elem) } +func (t *commonType) IsVariadic() bool { + if t.Kind() != Func { + panic("reflect: IsVariadic of non-func type") + } + tt := (*funcType)(unsafe.Pointer(t)) + return tt.dotdotdot +} -// arrayOrSliceType is an unexported method that guarantees only -// arrays and slices implement ArrayOrSliceType. -func (*ArrayType) arrayOrSliceType() {} +func (t *commonType) Elem() Type { + switch t.Kind() { + case Array: + tt := (*arrayType)(unsafe.Pointer(t)) + return toType(tt.elem) + case Chan: + tt := (*chanType)(unsafe.Pointer(t)) + return toType(tt.elem) + case Map: + tt := (*mapType)(unsafe.Pointer(t)) + return toType(tt.elem) + case Ptr: + tt := (*ptrType)(unsafe.Pointer(t)) + return toType(tt.elem) + case Slice: + tt := (*sliceType)(unsafe.Pointer(t)) + return toType(tt.elem) + } + panic("reflect; Elem of invalid type") +} -// Dir returns the channel direction. -func (t *ChanType) Dir() ChanDir { return ChanDir(t.dir) } +func (t *commonType) Field(i int) StructField { + if t.Kind() != Struct { + panic("reflect: Field of non-struct type") + } + tt := (*structType)(unsafe.Pointer(t)) + return tt.Field(i) +} -// Elem returns the channel's element type. -func (t *ChanType) Elem() Type { return toType(*t.elem) } +func (t *commonType) FieldByIndex(index []int) StructField { + if t.Kind() != Struct { + panic("reflect: FieldByIndex of non-struct type") + } + tt := (*structType)(unsafe.Pointer(t)) + return tt.FieldByIndex(index) +} + +func (t *commonType) FieldByName(name string) (StructField, bool) { + if t.Kind() != Struct { + panic("reflect: FieldByName of non-struct type") + } + tt := (*structType)(unsafe.Pointer(t)) + return tt.FieldByName(name) +} + +func (t *commonType) FieldByNameFunc(match func(string) bool) (StructField, bool) { + if t.Kind() != Struct { + panic("reflect: FieldByNameFunc of non-struct type") + } + tt := (*structType)(unsafe.Pointer(t)) + return tt.FieldByNameFunc(match) +} + +func (t *commonType) In(i int) Type { + if t.Kind() != Func { + panic("reflect: In of non-func type") + } + tt := (*funcType)(unsafe.Pointer(t)) + return toType(tt.in[i]) +} + +func (t *commonType) Key() Type { + if t.Kind() != Map { + panic("reflect: Key of non-map type") + } + tt := (*mapType)(unsafe.Pointer(t)) + return toType(tt.key) +} + +func (t *commonType) Len() int { + if t.Kind() != Array { + panic("reflect: Len of non-array type") + } + tt := (*arrayType)(unsafe.Pointer(t)) + return int(tt.len) +} + +func (t *commonType) NumField() int { + if t.Kind() != Struct { + panic("reflect: NumField of non-struct type") + } + tt := (*structType)(unsafe.Pointer(t)) + return len(tt.fields) +} + +func (t *commonType) NumIn() int { + if t.Kind() != Func { + panic("reflect; NumIn of non-func type") + } + tt := (*funcType)(unsafe.Pointer(t)) + return len(tt.in) +} + +func (t *commonType) NumOut() int { + if t.Kind() != Func { + panic("reflect; NumOut of non-func type") + } + tt := (*funcType)(unsafe.Pointer(t)) + return len(tt.out) +} + +func (t *commonType) Out(i int) Type { + if t.Kind() != Func { + panic("reflect: Out of non-func type") + } + tt := (*funcType)(unsafe.Pointer(t)) + return toType(tt.out[i]) +} func (d ChanDir) String() string { switch d { @@ -429,43 +611,8 @@ func (d ChanDir) String() string { return "ChanDir" + strconv.Itoa(int(d)) } -// In returns the type of the i'th function input parameter. -func (t *FuncType) In(i int) Type { - if i < 0 || i >= len(t.in) { - return nil - } - return toType(*t.in[i]) -} - -// DotDotDot returns true if the final function input parameter -// is a "..." parameter. If so, t.In(t.NumIn() - 1) returns the -// parameter's underlying static type []T. -// -// For concreteness, if t is func(x int, y ... float), then -// -// t.NumIn() == 2 -// t.In(0) is the reflect.Type for "int" -// t.In(1) is the reflect.Type for "[]float" -// t.DotDotDot() == true -// -func (t *FuncType) DotDotDot() bool { return t.dotdotdot } - -// NumIn returns the number of input parameters. -func (t *FuncType) NumIn() int { return len(t.in) } - -// Out returns the type of the i'th function output parameter. -func (t *FuncType) Out(i int) Type { - if i < 0 || i >= len(t.out) { - return nil - } - return toType(*t.out[i]) -} - -// NumOut returns the number of function output parameters. -func (t *FuncType) NumOut() int { return len(t.out) } - // Method returns the i'th method in the type's method set. -func (t *InterfaceType) Method(i int) (m Method) { +func (t *interfaceType) Method(i int) (m Method) { if i < 0 || i >= len(t.methods) { return } @@ -474,24 +621,12 @@ func (t *InterfaceType) Method(i int) (m Method) { if p.pkgPath != nil { m.PkgPath = *p.pkgPath } - m.Type = toType(*p.typ).(*FuncType) + m.Type = toType(p.typ) return } // NumMethod returns the number of interface methods in the type's method set. -func (t *InterfaceType) NumMethod() int { return len(t.methods) } - -// Key returns the map key type. -func (t *MapType) Key() Type { return toType(*t.key) } - -// Elem returns the map element type. -func (t *MapType) Elem() Type { return toType(*t.elem) } - -// Elem returns the pointer element type. -func (t *PtrType) Elem() Type { return toType(*t.elem) } - -// Elem returns the type of the slice's elements. -func (t *SliceType) Elem() Type { return toType(*t.elem) } +func (t *interfaceType) NumMethod() int { return len(t.methods) } type StructField struct { PkgPath string // empty for uppercase Name @@ -504,18 +639,18 @@ type StructField struct { } // Field returns the i'th struct field. -func (t *StructType) Field(i int) (f StructField) { +func (t *structType) Field(i int) (f StructField) { if i < 0 || i >= len(t.fields) { return } p := t.fields[i] - f.Type = toType(*p.typ) + f.Type = toType(p.typ) if p.name != nil { f.Name = *p.name } else { t := f.Type - if pt, ok := t.(*PtrType); ok { - t = pt.Elem() + if t.Kind() == Ptr { + t = t.Elem() } f.Name = t.Name() f.Anonymous = true @@ -535,29 +670,24 @@ func (t *StructType) Field(i int) (f StructField) { // is wrong for FieldByIndex? // FieldByIndex returns the nested field corresponding to index. -func (t *StructType) FieldByIndex(index []int) (f StructField) { +func (t *structType) FieldByIndex(index []int) (f StructField) { + f.Type = Type(t.toType()) for i, x := range index { if i > 0 { ft := f.Type - if pt, ok := ft.(*PtrType); ok { - ft = pt.Elem() - } - if st, ok := ft.(*StructType); ok { - t = st - } else { - var f0 StructField - f = f0 - return + if ft.Kind() == Ptr && ft.Elem().Kind() == Struct { + ft = ft.Elem() } + f.Type = ft } - f = t.Field(x) + f = f.Type.Field(x) } return } const inf = 1 << 30 // infinity - no struct has that many nesting levels -func (t *StructType) fieldByNameFunc(match func(string) bool, mark map[*StructType]bool, depth int) (ff StructField, fd int) { +func (t *structType) fieldByNameFunc(match func(string) bool, mark map[*structType]bool, depth int) (ff StructField, fd int) { fd = inf // field depth if mark[t] { @@ -578,8 +708,8 @@ L: d = depth case f.Anonymous: ft := f.Type - if pt, ok := ft.(*PtrType); ok { - ft = pt.Elem() + if ft.Kind() == Ptr { + ft = ft.Elem() } switch { case match(ft.Name()): @@ -587,7 +717,8 @@ L: d = depth case fd > depth: // No top-level field yet; look inside nested structs. - if st, ok := ft.(*StructType); ok { + if ft.Kind() == Struct { + st := (*structType)(unsafe.Pointer(ft.(*commonType))) f, d = st.fieldByNameFunc(match, mark, depth+1) } } @@ -626,97 +757,54 @@ L: // FieldByName returns the struct field with the given name // and a boolean to indicate if the field was found. -func (t *StructType) FieldByName(name string) (f StructField, present bool) { +func (t *structType) FieldByName(name string) (f StructField, present bool) { return t.FieldByNameFunc(func(s string) bool { return s == name }) } // FieldByNameFunc returns the struct field with a name that satisfies the // match function and a boolean to indicate if the field was found. -func (t *StructType) FieldByNameFunc(match func(string) bool) (f StructField, present bool) { - if ff, fd := t.fieldByNameFunc(match, make(map[*StructType]bool), 0); fd < inf { +func (t *structType) FieldByNameFunc(match func(string) bool) (f StructField, present bool) { + if ff, fd := t.fieldByNameFunc(match, make(map[*structType]bool), 0); fd < inf { ff.Index = ff.Index[0 : fd+1] f, present = ff, true } return } -// NumField returns the number of struct fields. -func (t *StructType) NumField() int { return len(t.fields) } - // Convert runtime type to reflect type. -// Same memory layouts, different method sets. -func toType(i interface{}) Type { - switch v := i.(type) { - case nil: - return nil - case *runtime.BoolType: - return (*BoolType)(unsafe.Pointer(v)) - case *runtime.FloatType: - return (*FloatType)(unsafe.Pointer(v)) - case *runtime.ComplexType: - return (*ComplexType)(unsafe.Pointer(v)) - case *runtime.IntType: - return (*IntType)(unsafe.Pointer(v)) - case *runtime.StringType: - return (*StringType)(unsafe.Pointer(v)) - case *runtime.UintType: - return (*UintType)(unsafe.Pointer(v)) - case *runtime.UnsafePointerType: - return (*UnsafePointerType)(unsafe.Pointer(v)) - case *runtime.ArrayType: - return (*ArrayType)(unsafe.Pointer(v)) - case *runtime.ChanType: - return (*ChanType)(unsafe.Pointer(v)) - case *runtime.FuncType: - return (*FuncType)(unsafe.Pointer(v)) - case *runtime.InterfaceType: - return (*InterfaceType)(unsafe.Pointer(v)) - case *runtime.MapType: - return (*MapType)(unsafe.Pointer(v)) - case *runtime.PtrType: - return (*PtrType)(unsafe.Pointer(v)) - case *runtime.SliceType: - return (*SliceType)(unsafe.Pointer(v)) - case *runtime.StructType: - return (*StructType)(unsafe.Pointer(v)) +func toType(p *runtime.Type) Type { + type hdr struct { + x interface{} + t commonType } - println(i) - panic("toType") -} - -// ArrayOrSliceType is the common interface implemented -// by both ArrayType and SliceType. -type ArrayOrSliceType interface { - Type - Elem() Type - arrayOrSliceType() // Guarantees only Array and Slice implement this interface. + t := &(*hdr)(unsafe.Pointer(p)).t + return t.toType() } // Typeof returns the reflection Type of the value in the interface{}. -func Typeof(i interface{}) Type { return toType(unsafe.Typeof(i)) } +func Typeof(i interface{}) Type { + type hdr struct { + typ *byte + val *commonType + } + rt := unsafe.Typeof(i) + t := (*(*hdr)(unsafe.Pointer(&rt))).val + return t.toType() +} // ptrMap is the cache for PtrTo. var ptrMap struct { sync.RWMutex - m map[Type]*PtrType -} - -// runtimePtrType is the runtime layout for a *PtrType. -// The memory immediately before the *PtrType is always -// the canonical runtime.Type to be used for a *runtime.Type -// describing this PtrType. -type runtimePtrType struct { - runtime.Type - runtime.PtrType + m map[*commonType]*ptrType } // PtrTo returns the pointer type with element t. // For example, if t represents type Foo, PtrTo(t) represents *Foo. -func PtrTo(t Type) *PtrType { +func PtrTo(t Type) Type { // If t records its pointer-to type, use it. - ct := t.common() + ct := t.(*commonType) if p := ct.ptrToThis; p != nil { - return toType(*p).(*PtrType) + return toType(p) } // Otherwise, synthesize one. @@ -726,35 +814,34 @@ func PtrTo(t Type) *PtrType { // the type structures in read-only memory. ptrMap.RLock() if m := ptrMap.m; m != nil { - if p := m[t]; p != nil { + if p := m[ct]; p != nil { ptrMap.RUnlock() - return p + return p.commonType.toType() } } ptrMap.RUnlock() ptrMap.Lock() if ptrMap.m == nil { - ptrMap.m = make(map[Type]*PtrType) + ptrMap.m = make(map[*commonType]*ptrType) } - p := ptrMap.m[t] + p := ptrMap.m[ct] if p != nil { // some other goroutine won the race and created it ptrMap.Unlock() return p } - // runtime.Type value is always right before type structure. - // 2*ptrSize is size of interface header - rt := (*runtime.Type)(unsafe.Pointer(uintptr(unsafe.Pointer(ct)) - uintptr(unsafe.Sizeof(runtime.Type(nil))))) + var rt struct { + i runtime.Type + ptrType + } + rt.i = (*runtime.PtrType)(unsafe.Pointer(&rt.ptrType)) - rp := new(runtimePtrType) - rp.Type = &rp.PtrType - - // initialize rp.PtrType using *byte's PtrType as a prototype. + // initialize p using *byte's PtrType as a prototype. // have to do assignment as PtrType, not runtime.PtrType, // in order to write to unexported fields. - p = (*PtrType)(unsafe.Pointer(&rp.PtrType)) - bp := (*PtrType)(unsafe.Pointer(unsafe.Typeof((*byte)(nil)).(*runtime.PtrType))) + p = &rt.ptrType + bp := (*ptrType)(unsafe.Pointer(unsafe.Typeof((*byte)(nil)).(*runtime.PtrType))) *p = *bp s := "*" + *ct.string @@ -769,9 +856,9 @@ func PtrTo(t Type) *PtrType { p.uncommonType = nil p.ptrToThis = nil - p.elem = rt + p.elem = (*runtime.Type)(unsafe.Pointer(uintptr(unsafe.Pointer(ct)) - uintptr(unsafe.Offsetof(rt.ptrType)))) - ptrMap.m[t] = (*PtrType)(unsafe.Pointer(&rp.PtrType)) + ptrMap.m[ct] = p ptrMap.Unlock() - return p + return p.commonType.toType() } diff --git a/src/pkg/reflect/value.go b/src/pkg/reflect/value.go index 01a40ec9a4..eeae6cce54 100644 --- a/src/pkg/reflect/value.go +++ b/src/pkg/reflect/value.go @@ -41,10 +41,482 @@ func memmove(adst, asrc addr, n uintptr) { } } -// Value is the common interface to reflection values. -// The implementations of Value (e.g., ArrayValue, StructValue) +// Value is the reflection interface to a Go value. +// +// Not all methods apply to all kinds of values. Restrictions, +// if any, are noted in the documentation for each method. +// Use the Kind method to find out the kind of value before +// calling kind-specific methods. Calling a method +// inappropriate to the kind of type causes a run time panic. +// +// The zero Value represents no value. +// Its IsValid method returns false, its Kind method returns Invalid, +// its String method returns "", and all other methods panic. +// Most functions and methods never return an invalid value. +// If one does, its documentation states the conditions explicitly. +type Value struct { + Internal valueInterface +} + +// TODO(rsc): This implementation of Value is a just a façade +// in front of the old implementation, now called valueInterface. +// A future CL will change it to a real implementation. +// Changing the API is already a big enough step for one CL. + +// A ValueError occurs when a Value method is invoked on +// a Value that does not support it. Such cases are documented +// in the description of each method. +type ValueError struct { + Method string + Kind Kind +} + +func (e *ValueError) String() string { + if e.Kind == 0 { + return "reflect: call of " + e.Method + " on zero Value" + } + return "reflect: call of " + e.Method + " on " + e.Kind.String() + " Value" +} + +// methodName returns the name of the calling method, +// assumed to be two stack frames above. +func methodName() string { + pc, _, _, _ := runtime.Caller(2) + f := runtime.FuncForPC(pc) + if f == nil { + return "unknown method" + } + return f.Name() +} + +func (v Value) internal() valueInterface { + vi := v.Internal + if vi == nil { + panic(&ValueError{methodName(), 0}) + } + return vi +} + +func (v Value) panicIfNot(want Kind) valueInterface { + vi := v.Internal + if vi == nil { + panic(&ValueError{methodName(), 0}) + } + if k := vi.Kind(); k != want { + panic(&ValueError{methodName(), k}) + } + return vi +} + +func (v Value) panicIfNots(wants []Kind) valueInterface { + vi := v.Internal + if vi == nil { + panic(&ValueError{methodName(), 0}) + } + k := vi.Kind() + for _, want := range wants { + if k == want { + return vi + } + } + panic(&ValueError{methodName(), k}) +} + +// Addr returns a pointer value representing the address of v. +// It panics if CanAddr() returns false. +// Addr is typically used to obtain a pointer to a struct field +// or slice element in order to call a method that requires a +// pointer receiver. +func (v Value) Addr() Value { + return v.internal().Addr() +} + +// Bool returns v's underlying value. +// It panics if v's kind is not Bool. +func (v Value) Bool() bool { + u := v.panicIfNot(Bool).(*boolValue) + return u.Get() +} + +// CanAddr returns true if the value's address can be obtained with Addr. +// Such values are called addressable. A value is addressable if it is +// an element of a slice, an element of an addressable array, +// a field of an addressable struct, the result of dereferencing a pointer, +// or the result of a call to NewValue, MakeChan, MakeMap, or Zero. +// If CanAddr returns false, calling Addr will panic. +func (v Value) CanAddr() bool { + return v.internal().CanAddr() +} + +// CanSet returns true if the value of v can be changed. +// Values obtained by the use of unexported struct fields +// can be read but not set. +// If CanSet returns false, calling Set or any type-specific +// setter (e.g., SetBool, SetInt64) will panic. +func (v Value) CanSet() bool { + return v.internal().CanSet() +} + +// Call calls the function v with the input parameters in. +// It panics if v's Kind is not Func. +// It returns the output parameters as Values. +func (v Value) Call(in []Value) []Value { + return v.panicIfNot(Func).(*funcValue).Call(in) +} + +var capKinds = []Kind{Array, Chan, Slice} + +type capper interface { + Cap() int +} + +// Cap returns v's capacity. +// It panics if v's Kind is not Array, Chan, or Slice. +func (v Value) Cap() int { + return v.panicIfNots(capKinds).(capper).Cap() +} + +// Close closes the channel v. +// It panics if v's Kind is not Chan. +func (v Value) Close() { + v.panicIfNot(Chan).(*chanValue).Close() +} + +var complexKinds = []Kind{Complex64, Complex128} + +// Complex returns v's underlying value, as a complex128. +// It panics if v's Kind is not Complex64 or Complex128 +func (v Value) Complex() complex128 { + return v.panicIfNots(complexKinds).(*complexValue).Get() +} + +var interfaceOrPtr = []Kind{Interface, Ptr} + +type elemer interface { + Elem() Value +} + +// Elem returns the value that the interface v contains +// or that the pointer v points to. +// It panics if v's Kind is not Interface or Ptr. +// It returns the zero Value if v is nil. +func (v Value) Elem() Value { + return v.panicIfNots(interfaceOrPtr).(elemer).Elem() +} + +// Field returns the i'th field of the struct v. +// It panics if v's Kind is not Struct. +func (v Value) Field(i int) Value { + return v.panicIfNot(Struct).(*structValue).Field(i) +} + +// FieldByIndex returns the nested field corresponding to index. +// It panics if v's Kind is not struct. +func (v Value) FieldByIndex(index []int) Value { + return v.panicIfNot(Struct).(*structValue).FieldByIndex(index) +} + +// FieldByName returns the struct field with the given name. +// It returns the zero Value if no field was found. +// It panics if v's Kind is not struct. +func (v Value) FieldByName(name string) Value { + return v.panicIfNot(Struct).(*structValue).FieldByName(name) +} + +// FieldByNameFunc returns the struct field with a name +// that satisfies the match function. +// It panics if v's Kind is not struct. +// It returns the zero Value if no field was found. +func (v Value) FieldByNameFunc(match func(string) bool) Value { + return v.panicIfNot(Struct).(*structValue).FieldByNameFunc(match) +} + +var floatKinds = []Kind{Float32, Float64} + +// Float returns v's underlying value, as an float64. +// It panics if v's Kind is not Float32 or Float64 +func (v Value) Float() float64 { + return v.panicIfNots(floatKinds).(*floatValue).Get() +} + +var arrayOrSlice = []Kind{Array, Slice} + +// Index returns v's i'th element. +// It panics if v's Kind is not Array or Slice. +func (v Value) Index(i int) Value { + return v.panicIfNots(arrayOrSlice).(arrayOrSliceValue).Elem(i) +} + +var intKinds = []Kind{Int, Int8, Int16, Int32, Int64} + +// Int returns v's underlying value, as an int64. +// It panics if v's Kind is not a sized or unsized Int kind. +func (v Value) Int() int64 { + return v.panicIfNots(intKinds).(*intValue).Get() +} + +// Interface returns v's value as an interface{}. +// If v is a method obtained by invoking Value.Method +// (as opposed to Type.Method), Interface cannot return an +// interface value, so it panics. +func (v Value) Interface() interface{} { + return v.internal().Interface() +} + +// InterfaceData returns the interface v's value as a uintptr pair. +// It panics if v's Kind is not Interface. +func (v Value) InterfaceData() [2]uintptr { + return v.panicIfNot(Interface).(*interfaceValue).Get() +} + +var nilKinds = []Kind{Chan, Func, Interface, Map, Ptr, Slice} + +type isNiller interface { + IsNil() bool +} + +// IsNil returns true if v is a nil value. +// It panics if v's Kind is not Chan, Func, Interface, Map, Ptr, or Slice. +func (v Value) IsNil() bool { + return v.panicIfNots(nilKinds).(isNiller).IsNil() +} + +// IsValid returns true if v represents a value. +// It returns false if v is the zero Value. +// If IsValid returns false, all other methods except String panic. +// Most functions and methods never return an invalid value. +// If one does, its documentation states the conditions explicitly. +func (v Value) IsValid() bool { + return v.Internal != nil +} + +// Kind returns v's Kind. +// If v is the zero Value (IsValid returns false), Kind returns Invalid. +func (v Value) Kind() Kind { + if v.Internal == nil { + return Invalid + } + return v.internal().Kind() +} + +var lenKinds = []Kind{Array, Chan, Map, Slice} + +type lenner interface { + Len() int +} + +// Len returns v's length. +// It panics if v's Kind is not Array, Chan, Map, or Slice. +func (v Value) Len() int { + return v.panicIfNots(lenKinds).(lenner).Len() +} + +// MapIndex returns the value associated with key in the map v. +// It panics if v's Kind is not Map. +// It returns the zero Value if key is not found in the map. +func (v Value) MapIndex(key Value) Value { + return v.panicIfNot(Map).(*mapValue).Elem(key) +} + +// MapKeys returns a slice containing all the keys present in the map, +// in unspecified order. +// It panics if v's Kind is not Map. +func (v Value) MapKeys() []Value { + return v.panicIfNot(Map).(*mapValue).Keys() +} + +// Method returns a function value corresponding to v's i'th method. +// The arguments to a Call on the returned function should not include +// a receiver; the returned function will always use v as the receiver. +func (v Value) Method(i int) Value { + return v.internal().Method(i) +} + +// NumField returns the number of fields in the struct v. +// It panics if v's Kind is not Struct. +func (v Value) NumField() int { + return v.panicIfNot(Struct).(*structValue).NumField() +} + +// OverflowComplex returns true if the complex128 x cannot be represented by v's type. +// It panics if v's Kind is not Complex64 or Complex128. +func (v Value) OverflowComplex(x complex128) bool { + return v.panicIfNots(complexKinds).(*complexValue).Overflow(x) +} + +// OverflowFloat returns true if the float64 x cannot be represented by v's type. +// It panics if v's Kind is not Float32 or Float64. +func (v Value) OverflowFloat(x float64) bool { + return v.panicIfNots(floatKinds).(*floatValue).Overflow(x) +} + +// OverflowInt returns true if the int64 x cannot be represented by v's type. +// It panics if v's Kind is not a sized or unsized Int kind. +func (v Value) OverflowInt(x int64) bool { + return v.panicIfNots(intKinds).(*intValue).Overflow(x) +} + +// OverflowUint returns true if the uint64 x cannot be represented by v's type. +// It panics if v's Kind is not a sized or unsized Uint kind. +func (v Value) OverflowUint(x uint64) bool { + return v.panicIfNots(uintKinds).(*uintValue).Overflow(x) +} + +var pointerKinds = []Kind{Chan, Func, Map, Ptr, Slice, UnsafePointer} + +type uintptrGetter interface { + Get() uintptr +} + +// Pointer returns v's value as a uintptr. +// It returns uintptr instead of unsafe.Pointer so that +// code using reflect cannot obtain unsafe.Pointers +// without importing the unsafe package explicitly. +// It panics if v's Kind is not Chan, Func, Map, Ptr, Slice, or UnsafePointer. +func (v Value) Pointer() uintptr { + return v.panicIfNots(pointerKinds).(uintptrGetter).Get() +} + + +// Recv receives and returns a value from the channel v. +// It panics if v's Kind is not Chan. +// The receive blocks until a value is ready. +// The boolean value ok is true if the value x corresponds to a send +// on the channel, false if it is a zero value received because the channel is closed. +func (v Value) Recv() (x Value, ok bool) { + return v.panicIfNot(Chan).(*chanValue).Recv() +} + +// Send sends x on the channel v. +// It panics if v's kind is not Chan or if x's type is not the same type as v's element type. +func (v Value) Send(x Value) { + v.panicIfNot(Chan).(*chanValue).Send(x) +} + +// Set assigns x to the value v; x must have the same type as v. +// It panics if CanSet() returns false or if x is the zero Value. +func (v Value) Set(x Value) { + x.internal() + v.internal().SetValue(x) +} + +// SetBool sets v's underlying value. +// It panics if v's Kind is not Bool or if CanSet() is false. +func (v Value) SetBool(x bool) { + v.panicIfNot(Bool).(*boolValue).Set(x) +} + +// SetComplex sets v's underlying value to x. +// It panics if v's Kind is not Complex64 or Complex128, or if CanSet() is false. +func (v Value) SetComplex(x complex128) { + v.panicIfNots(complexKinds).(*complexValue).Set(x) +} + +// SetFloat sets v's underlying value to x. +// It panics if v's Kind is not Float32 or Float64, or if CanSet() is false. +func (v Value) SetFloat(x float64) { + v.panicIfNots(floatKinds).(*floatValue).Set(x) +} + +// SetInt sets v's underlying value to x. +// It panics if v's Kind is not a sized or unsized Int kind, or if CanSet() is false. +func (v Value) SetInt(x int64) { + v.panicIfNots(intKinds).(*intValue).Set(x) +} + +// SetLen sets v's length to n. +// It panics if v's Kind is not Slice. +func (v Value) SetLen(n int) { + v.panicIfNot(Slice).(*sliceValue).SetLen(n) +} + +// SetMapIndex sets the value associated with key in the map v to val. +// It panics if v's Kind is not Map. +// If val is the zero Value, SetMapIndex deletes the key from the map. +func (v Value) SetMapIndex(key, val Value) { + v.panicIfNot(Map).(*mapValue).SetElem(key, val) +} + +// SetUint sets v's underlying value to x. +// It panics if v's Kind is not a sized or unsized Uint kind, or if CanSet() is false. +func (v Value) SetUint(x uint64) { + v.panicIfNots(uintKinds).(*uintValue).Set(x) +} + +// SetPointer sets the unsafe.Pointer value v to x. +// It panics if v's Kind is not UnsafePointer. +func (v Value) SetPointer(x unsafe.Pointer) { + v.panicIfNot(UnsafePointer).(*unsafePointerValue).Set(x) +} + +// SetString sets v's underlying value to x. +// It panics if v's Kind is not String or if CanSet() is false. +func (v Value) SetString(x string) { + v.panicIfNot(String).(*stringValue).Set(x) +} + +// BUG(rsc): Value.Slice should allow slicing arrays. + +// Slice returns a slice of v. +// It panics if v's Kind is not Slice. +func (v Value) Slice(beg, end int) Value { + return v.panicIfNot(Slice).(*sliceValue).Slice(beg, end) +} + +// String returns the string v's underlying value, as a string. +// String is a special case because of Go's String method convention. +// Unlike the other getters, it does not panic if v's Kind is not String. +// Instead, it returns a string of the form "" where T is v's type. +func (v Value) String() string { + vi := v.Internal + if vi == nil { + return "" + } + if vi.Kind() == String { + return vi.(*stringValue).Get() + } + return "<" + vi.Type().String() + " Value>" +} + +// TryRecv attempts to receive a value from the channel v but will not block. +// It panics if v's Kind is not Chan. +// If the receive cannot finish without blocking, x is the zero Value. +// The boolean ok is true if the value x corresponds to a send +// on the channel, false if it is a zero value received because the channel is closed. +func (v Value) TryRecv() (x Value, ok bool) { + return v.panicIfNot(Chan).(*chanValue).TryRecv() +} + +// TrySend attempts to send x on the channel v but will not block. +// It panics if v's Kind is not Chan. +// It returns true if the value was sent, false otherwise. +func (v Value) TrySend(x Value) bool { + return v.panicIfNot(Chan).(*chanValue).TrySend(x) +} + +// Type returns v's type. +func (v Value) Type() Type { + return v.internal().Type() +} + +var uintKinds = []Kind{Uint, Uint8, Uint16, Uint32, Uint64, Uintptr} + +// Uint returns v's underlying value, as a uint64. +// It panics if v's Kind is not a sized or unsized Uint kind. +func (v Value) Uint() uint64 { + return v.panicIfNots(uintKinds).(*uintValue).Get() +} + +// UnsafeAddr returns a pointer to v's data. +// It is for advanced clients that also import the "unsafe" package. +func (v Value) UnsafeAddr() uintptr { + return v.internal().UnsafeAddr() +} + +// valueInterface is the common interface to reflection values. +// The implementations of Value (e.g., arrayValue, structValue) // have additional type-specific methods. -type Value interface { +type valueInterface interface { // Type returns the value's type. Type() Type @@ -64,7 +536,7 @@ type Value interface { // Such values are called addressable. A value is addressable if it is // an element of a slice, an element of an addressable array, // a field of an addressable struct, the result of dereferencing a pointer, - // or the result of a call to NewValue, MakeChan, MakeMap, or MakeZero. + // or the result of a call to NewValue, MakeChan, MakeMap, or Zero. // If CanAddr returns false, calling Addr will panic. CanAddr() bool @@ -72,17 +544,19 @@ type Value interface { // If the value is not addressable, Addr panics. // Addr is typically used to obtain a pointer to a struct field or slice element // in order to call a method that requires a pointer receiver. - Addr() *PtrValue + Addr() Value // UnsafeAddr returns a pointer to the underlying data. // It is for advanced clients that also import the "unsafe" package. UnsafeAddr() uintptr - // Method returns a FuncValue corresponding to the value's i'th method. - // The arguments to a Call on the returned FuncValue - // should not include a receiver; the FuncValue will use + // Method returns a funcValue corresponding to the value's i'th method. + // The arguments to a Call on the returned funcValue + // should not include a receiver; the funcValue will use // the value as the receiver. - Method(i int) *FuncValue + Method(i int) Value + + Kind() Kind getAddr() addr } @@ -97,7 +571,7 @@ const ( // value is the common implementation of most values. // It is embedded in other, public struct types, but always // with a unique tag like "uint" or "float" so that the client cannot -// convert from, say, *UintValue to *FloatValue. +// convert from, say, *uintValue to *floatValue. type value struct { typ Type addr addr @@ -106,7 +580,9 @@ type value struct { func (v *value) Type() Type { return v.typ } -func (v *value) Addr() *PtrValue { +func (v *value) Kind() Kind { return v.typ.Kind() } + +func (v *value) Addr() Value { if !v.CanAddr() { panic("reflect: cannot take address of value") } @@ -119,7 +595,7 @@ func (v *value) Addr() *PtrValue { // the caller would get the address of a - // but it doesn't match the Go model. // The language doesn't let you say &&v. - return newValue(PtrTo(v.typ), addr(&a), flag).(*PtrValue) + return newValue(PtrTo(v.typ), addr(&a), flag) } func (v *value) UnsafeAddr() uintptr { return uintptr(v.addr) } @@ -127,7 +603,8 @@ func (v *value) UnsafeAddr() uintptr { return uintptr(v.addr) } func (v *value) getAddr() addr { return v.addr } func (v *value) Interface() interface{} { - if typ, ok := v.typ.(*InterfaceType); ok { + typ := v.typ + if typ.Kind() == Interface { // There are two different representations of interface values, // one if the interface type has methods and one if it doesn't. // These two representations require different expressions @@ -153,16 +630,16 @@ func (v *value) CanAddr() bool { return v.flag&canAddr != 0 } * basic types */ -// BoolValue represents a bool value. -type BoolValue struct { +// boolValue represents a bool value. +type boolValue struct { value "bool" } // Get returns the underlying bool value. -func (v *BoolValue) Get() bool { return *(*bool)(v.addr) } +func (v *boolValue) Get() bool { return *(*bool)(v.addr) } // Set sets v to the value x. -func (v *BoolValue) Set(x bool) { +func (v *boolValue) Set(x bool) { if !v.CanSet() { panic(cannotSet) } @@ -170,15 +647,15 @@ func (v *BoolValue) Set(x bool) { } // Set sets v to the value x. -func (v *BoolValue) SetValue(x Value) { v.Set(x.(*BoolValue).Get()) } +func (v *boolValue) SetValue(x Value) { v.Set(x.Bool()) } -// FloatValue represents a float value. -type FloatValue struct { +// floatValue represents a float value. +type floatValue struct { value "float" } // Get returns the underlying int value. -func (v *FloatValue) Get() float64 { +func (v *floatValue) Get() float64 { switch v.typ.Kind() { case Float32: return float64(*(*float32)(v.addr)) @@ -189,7 +666,7 @@ func (v *FloatValue) Get() float64 { } // Set sets v to the value x. -func (v *FloatValue) Set(x float64) { +func (v *floatValue) Set(x float64) { if !v.CanSet() { panic(cannotSet) } @@ -204,7 +681,7 @@ func (v *FloatValue) Set(x float64) { } // Overflow returns true if x cannot be represented by the type of v. -func (v *FloatValue) Overflow(x float64) bool { +func (v *floatValue) Overflow(x float64) bool { if v.typ.Size() == 8 { return false } @@ -215,15 +692,15 @@ func (v *FloatValue) Overflow(x float64) bool { } // Set sets v to the value x. -func (v *FloatValue) SetValue(x Value) { v.Set(x.(*FloatValue).Get()) } +func (v *floatValue) SetValue(x Value) { v.Set(x.Float()) } -// ComplexValue represents a complex value. -type ComplexValue struct { +// complexValue represents a complex value. +type complexValue struct { value "complex" } // Get returns the underlying complex value. -func (v *ComplexValue) Get() complex128 { +func (v *complexValue) Get() complex128 { switch v.typ.Kind() { case Complex64: return complex128(*(*complex64)(v.addr)) @@ -234,7 +711,7 @@ func (v *ComplexValue) Get() complex128 { } // Set sets v to the value x. -func (v *ComplexValue) Set(x complex128) { +func (v *complexValue) Set(x complex128) { if !v.CanSet() { panic(cannotSet) } @@ -248,16 +725,33 @@ func (v *ComplexValue) Set(x complex128) { } } -// Set sets v to the value x. -func (v *ComplexValue) SetValue(x Value) { v.Set(x.(*ComplexValue).Get()) } +// How did we forget this one? +func (v *complexValue) Overflow(x complex128) bool { + if v.typ.Size() == 16 { + return false + } + r := real(x) + i := imag(x) + if r < 0 { + r = -r + } + if i < 0 { + i = -i + } + return math.MaxFloat32 <= r && r <= math.MaxFloat64 || + math.MaxFloat32 <= i && i <= math.MaxFloat64 +} -// IntValue represents an int value. -type IntValue struct { +// Set sets v to the value x. +func (v *complexValue) SetValue(x Value) { v.Set(x.Complex()) } + +// intValue represents an int value. +type intValue struct { value "int" } // Get returns the underlying int value. -func (v *IntValue) Get() int64 { +func (v *intValue) Get() int64 { switch v.typ.Kind() { case Int: return int64(*(*int)(v.addr)) @@ -274,7 +768,7 @@ func (v *IntValue) Get() int64 { } // Set sets v to the value x. -func (v *IntValue) Set(x int64) { +func (v *intValue) Set(x int64) { if !v.CanSet() { panic(cannotSet) } @@ -295,10 +789,10 @@ func (v *IntValue) Set(x int64) { } // Set sets v to the value x. -func (v *IntValue) SetValue(x Value) { v.Set(x.(*IntValue).Get()) } +func (v *intValue) SetValue(x Value) { v.Set(x.Int()) } // Overflow returns true if x cannot be represented by the type of v. -func (v *IntValue) Overflow(x int64) bool { +func (v *intValue) Overflow(x int64) bool { bitSize := uint(v.typ.Bits()) trunc := (x << (64 - bitSize)) >> (64 - bitSize) return x != trunc @@ -310,16 +804,16 @@ type StringHeader struct { Len int } -// StringValue represents a string value. -type StringValue struct { +// stringValue represents a string value. +type stringValue struct { value "string" } // Get returns the underlying string value. -func (v *StringValue) Get() string { return *(*string)(v.addr) } +func (v *stringValue) Get() string { return *(*string)(v.addr) } // Set sets v to the value x. -func (v *StringValue) Set(x string) { +func (v *stringValue) Set(x string) { if !v.CanSet() { panic(cannotSet) } @@ -327,15 +821,18 @@ func (v *StringValue) Set(x string) { } // Set sets v to the value x. -func (v *StringValue) SetValue(x Value) { v.Set(x.(*StringValue).Get()) } +func (v *stringValue) SetValue(x Value) { + // Do the kind check explicitly, because x.String() does not. + v.Set(x.panicIfNot(String).(*stringValue).Get()) +} -// UintValue represents a uint value. -type UintValue struct { +// uintValue represents a uint value. +type uintValue struct { value "uint" } // Get returns the underlying uuint value. -func (v *UintValue) Get() uint64 { +func (v *uintValue) Get() uint64 { switch v.typ.Kind() { case Uint: return uint64(*(*uint)(v.addr)) @@ -354,7 +851,7 @@ func (v *UintValue) Get() uint64 { } // Set sets v to the value x. -func (v *UintValue) Set(x uint64) { +func (v *uintValue) Set(x uint64) { if !v.CanSet() { panic(cannotSet) } @@ -377,17 +874,17 @@ func (v *UintValue) Set(x uint64) { } // Overflow returns true if x cannot be represented by the type of v. -func (v *UintValue) Overflow(x uint64) bool { +func (v *uintValue) Overflow(x uint64) bool { bitSize := uint(v.typ.Bits()) trunc := (x << (64 - bitSize)) >> (64 - bitSize) return x != trunc } // Set sets v to the value x. -func (v *UintValue) SetValue(x Value) { v.Set(x.(*UintValue).Get()) } +func (v *uintValue) SetValue(x Value) { v.Set(x.Uint()) } -// UnsafePointerValue represents an unsafe.Pointer value. -type UnsafePointerValue struct { +// unsafePointerValue represents an unsafe.Pointer value. +type unsafePointerValue struct { value "unsafe.Pointer" } @@ -395,10 +892,10 @@ type UnsafePointerValue struct { // Get returns uintptr, not unsafe.Pointer, so that // programs that do not import "unsafe" cannot // obtain a value of unsafe.Pointer type from "reflect". -func (v *UnsafePointerValue) Get() uintptr { return uintptr(*(*unsafe.Pointer)(v.addr)) } +func (v *unsafePointerValue) Get() uintptr { return uintptr(*(*unsafe.Pointer)(v.addr)) } // Set sets v to the value x. -func (v *UnsafePointerValue) Set(x unsafe.Pointer) { +func (v *unsafePointerValue) Set(x unsafe.Pointer) { if !v.CanSet() { panic(cannotSet) } @@ -406,8 +903,10 @@ func (v *UnsafePointerValue) Set(x unsafe.Pointer) { } // Set sets v to the value x. -func (v *UnsafePointerValue) SetValue(x Value) { - v.Set(unsafe.Pointer(x.(*UnsafePointerValue).Get())) +func (v *unsafePointerValue) SetValue(x Value) { + // Do the kind check explicitly, because x.UnsafePointer + // applies to more than just the UnsafePointer Kind. + v.Set(unsafe.Pointer(x.panicIfNot(UnsafePointer).(*unsafePointerValue).Get())) } func typesMustMatch(t1, t2 Type) { @@ -421,9 +920,9 @@ func typesMustMatch(t1, t2 Type) { */ // ArrayOrSliceValue is the common interface -// implemented by both ArrayValue and SliceValue. -type ArrayOrSliceValue interface { - Value +// implemented by both arrayValue and sliceValue. +type arrayOrSliceValue interface { + valueInterface Len() int Cap() int Elem(i int) Value @@ -432,7 +931,7 @@ type ArrayOrSliceValue interface { // grow grows the slice s so that it can hold extra more values, allocating // more capacity if needed. It also returns the old and new slice lengths. -func grow(s *SliceValue, extra int) (*SliceValue, int, int) { +func grow(s Value, extra int) (Value, int, int) { i0 := s.Len() i1 := i0 + extra if i1 < i0 { @@ -453,24 +952,25 @@ func grow(s *SliceValue, extra int) (*SliceValue, int, int) { } } } - t := MakeSlice(s.Type().(*SliceType), i1, m) + t := MakeSlice(s.Type(), i1, m) Copy(t, s) return t, i0, i1 } // Append appends the values x to a slice s and returns the resulting slice. // Each x must have the same type as s' element type. -func Append(s *SliceValue, x ...Value) *SliceValue { +func Append(s Value, x ...Value) Value { s, i0, i1 := grow(s, len(x)) + sa := s.panicIfNot(Slice).(*sliceValue) for i, j := i0, 0; i < i1; i, j = i+1, j+1 { - s.Elem(i).SetValue(x[j]) + sa.Elem(i).Set(x[j]) } return s } // AppendSlice appends a slice t to a slice s and returns the resulting slice. // The slices s and t must have the same element type. -func AppendSlice(s, t *SliceValue) *SliceValue { +func AppendSlice(s, t Value) Value { s, i0, i1 := grow(s, t.Len()) Copy(s.Slice(i0, i1), t) return s @@ -479,51 +979,56 @@ func AppendSlice(s, t *SliceValue) *SliceValue { // Copy copies the contents of src into dst until either // dst has been filled or src has been exhausted. // It returns the number of elements copied. -// The arrays dst and src must have the same element type. -func Copy(dst, src ArrayOrSliceValue) int { +// Dst and src each must be a slice or array, and they +// must have the same element type. +func Copy(dst, src Value) int { // TODO: This will have to move into the runtime // once the real gc goes in. - de := dst.Type().(ArrayOrSliceType).Elem() - se := src.Type().(ArrayOrSliceType).Elem() + de := dst.Type().Elem() + se := src.Type().Elem() typesMustMatch(de, se) n := dst.Len() if xn := src.Len(); n > xn { n = xn } - memmove(dst.addr(), src.addr(), uintptr(n)*de.Size()) + memmove(dst.panicIfNots(arrayOrSlice).(arrayOrSliceValue).addr(), + src.panicIfNots(arrayOrSlice).(arrayOrSliceValue).addr(), + uintptr(n)*de.Size()) return n } -// An ArrayValue represents an array. -type ArrayValue struct { +// An arrayValue represents an array. +type arrayValue struct { value "array" } // Len returns the length of the array. -func (v *ArrayValue) Len() int { return v.typ.(*ArrayType).Len() } +func (v *arrayValue) Len() int { return v.typ.Len() } // Cap returns the capacity of the array (equal to Len()). -func (v *ArrayValue) Cap() int { return v.typ.(*ArrayType).Len() } +func (v *arrayValue) Cap() int { return v.typ.Len() } // addr returns the base address of the data in the array. -func (v *ArrayValue) addr() addr { return v.value.addr } +func (v *arrayValue) addr() addr { return v.value.addr } // Set assigns x to v. // The new value x must have the same type as v. -func (v *ArrayValue) Set(x *ArrayValue) { +func (v *arrayValue) Set(x *arrayValue) { if !v.CanSet() { panic(cannotSet) } typesMustMatch(v.typ, x.typ) - Copy(v, x) + Copy(Value{v}, Value{x}) } // Set sets v to the value x. -func (v *ArrayValue) SetValue(x Value) { v.Set(x.(*ArrayValue)) } +func (v *arrayValue) SetValue(x Value) { + v.Set(x.panicIfNot(Array).(*arrayValue)) +} // Elem returns the i'th element of v. -func (v *ArrayValue) Elem(i int) Value { - typ := v.typ.(*ArrayType).Elem() +func (v *arrayValue) Elem(i int) Value { + typ := v.typ.Elem() n := v.Len() if i < 0 || i >= n { panic("array index out of bounds") @@ -543,28 +1048,28 @@ type SliceHeader struct { Cap int } -// A SliceValue represents a slice. -type SliceValue struct { +// A sliceValue represents a slice. +type sliceValue struct { value "slice" } -func (v *SliceValue) slice() *SliceHeader { return (*SliceHeader)(v.value.addr) } +func (v *sliceValue) slice() *SliceHeader { return (*SliceHeader)(v.value.addr) } // IsNil returns whether v is a nil slice. -func (v *SliceValue) IsNil() bool { return v.slice().Data == 0 } +func (v *sliceValue) IsNil() bool { return v.slice().Data == 0 } // Len returns the length of the slice. -func (v *SliceValue) Len() int { return int(v.slice().Len) } +func (v *sliceValue) Len() int { return int(v.slice().Len) } // Cap returns the capacity of the slice. -func (v *SliceValue) Cap() int { return int(v.slice().Cap) } +func (v *sliceValue) Cap() int { return int(v.slice().Cap) } // addr returns the base address of the data in the slice. -func (v *SliceValue) addr() addr { return addr(v.slice().Data) } +func (v *sliceValue) addr() addr { return addr(v.slice().Data) } // SetLen changes the length of v. // The new length n must be between 0 and the capacity, inclusive. -func (v *SliceValue) SetLen(n int) { +func (v *sliceValue) SetLen(n int) { s := v.slice() if n < 0 || n > int(s.Cap) { panic("reflect: slice length out of range in SetLen") @@ -574,7 +1079,7 @@ func (v *SliceValue) SetLen(n int) { // Set assigns x to v. // The new value x must have the same type as v. -func (v *SliceValue) Set(x *SliceValue) { +func (v *sliceValue) Set(x *sliceValue) { if !v.CanSet() { panic(cannotSet) } @@ -583,23 +1088,25 @@ func (v *SliceValue) Set(x *SliceValue) { } // Set sets v to the value x. -func (v *SliceValue) SetValue(x Value) { v.Set(x.(*SliceValue)) } +func (v *sliceValue) SetValue(x Value) { + v.Set(x.panicIfNot(Slice).(*sliceValue)) +} // Get returns the uintptr address of the v.Cap()'th element. This gives // the same result for all slices of the same array. // It is mainly useful for printing. -func (v *SliceValue) Get() uintptr { - typ := v.typ.(*SliceType) +func (v *sliceValue) Get() uintptr { + typ := v.typ return uintptr(v.addr()) + uintptr(v.Cap())*typ.Elem().Size() } // Slice returns a sub-slice of the slice v. -func (v *SliceValue) Slice(beg, end int) *SliceValue { +func (v *sliceValue) Slice(beg, end int) Value { cap := v.Cap() if beg < 0 || end < beg || end > cap { panic("slice index out of bounds") } - typ := v.typ.(*SliceType) + typ := v.typ s := new(SliceHeader) s.Data = uintptr(v.addr()) + uintptr(beg)*typ.Elem().Size() s.Len = end - beg @@ -611,12 +1118,12 @@ func (v *SliceValue) Slice(beg, end int) *SliceValue { if v.flag&canStore != 0 { flag |= canStore } - return newValue(typ, addr(s), flag).(*SliceValue) + return newValue(typ, addr(s), flag) } // Elem returns the i'th element of v. -func (v *SliceValue) Elem(i int) Value { - typ := v.typ.(*SliceType).Elem() +func (v *sliceValue) Elem(i int) Value { + typ := v.typ.Elem() n := v.Len() if i < 0 || i >= n { panic("reflect: slice index out of range") @@ -631,30 +1138,33 @@ func (v *SliceValue) Elem(i int) Value { // MakeSlice creates a new zero-initialized slice value // for the specified slice type, length, and capacity. -func MakeSlice(typ *SliceType, len, cap int) *SliceValue { +func MakeSlice(typ Type, len, cap int) Value { + if typ.Kind() != Slice { + panic("reflect: MakeSlice of non-slice type") + } s := &SliceHeader{ Data: uintptr(unsafe.NewArray(typ.Elem(), cap)), Len: len, Cap: cap, } - return newValue(typ, addr(s), canAddr|canSet|canStore).(*SliceValue) + return newValue(typ, addr(s), canAddr|canSet|canStore) } /* * chan */ -// A ChanValue represents a chan. -type ChanValue struct { +// A chanValue represents a chan. +type chanValue struct { value "chan" } // IsNil returns whether v is a nil channel. -func (v *ChanValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 } +func (v *chanValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 } // Set assigns x to v. // The new value x must have the same type as v. -func (v *ChanValue) Set(x *ChanValue) { +func (v *chanValue) Set(x *chanValue) { if !v.CanSet() { panic(cannotSet) } @@ -663,11 +1173,13 @@ func (v *ChanValue) Set(x *ChanValue) { } // Set sets v to the value x. -func (v *ChanValue) SetValue(x Value) { v.Set(x.(*ChanValue)) } +func (v *chanValue) SetValue(x Value) { + v.Set(x.panicIfNot(Chan).(*chanValue)) +} // Get returns the uintptr value of v. // It is mainly useful for printing. -func (v *ChanValue) Get() uintptr { return *(*uintptr)(v.addr) } +func (v *chanValue) Get() uintptr { return *(*uintptr)(v.addr) } // implemented in ../pkg/runtime/reflect.cgo func makechan(typ *runtime.ChanType, size uint32) (ch *byte) @@ -678,59 +1190,59 @@ func chanlen(ch *byte) int32 func chancap(ch *byte) int32 // Close closes the channel. -func (v *ChanValue) Close() { +func (v *chanValue) Close() { ch := *(**byte)(v.addr) chanclose(ch) } -func (v *ChanValue) Len() int { +func (v *chanValue) Len() int { ch := *(**byte)(v.addr) return int(chanlen(ch)) } -func (v *ChanValue) Cap() int { +func (v *chanValue) Cap() int { ch := *(**byte)(v.addr) return int(chancap(ch)) } // internal send; non-blocking if selected != nil -func (v *ChanValue) send(x Value, selected *bool) { - t := v.Type().(*ChanType) - if t.Dir()&SendDir == 0 { +func (v *chanValue) send(x Value, selected *bool) { + t := v.Type() + if t.ChanDir()&SendDir == 0 { panic("send on recv-only channel") } typesMustMatch(t.Elem(), x.Type()) ch := *(**byte)(v.addr) - chansend(ch, (*byte)(x.getAddr()), selected) + chansend(ch, (*byte)(x.internal().getAddr()), selected) } // internal recv; non-blocking if selected != nil -func (v *ChanValue) recv(selected *bool) (Value, bool) { - t := v.Type().(*ChanType) - if t.Dir()&RecvDir == 0 { +func (v *chanValue) recv(selected *bool) (Value, bool) { + t := v.Type() + if t.ChanDir()&RecvDir == 0 { panic("recv on send-only channel") } ch := *(**byte)(v.addr) - x := MakeZero(t.Elem()) + x := Zero(t.Elem()) var ok bool - chanrecv(ch, (*byte)(x.getAddr()), selected, &ok) + chanrecv(ch, (*byte)(x.internal().getAddr()), selected, &ok) return x, ok } // Send sends x on the channel v. -func (v *ChanValue) Send(x Value) { v.send(x, nil) } +func (v *chanValue) Send(x Value) { v.send(x, nil) } // Recv receives and returns a value from the channel v. // The receive blocks until a value is ready. // The boolean value ok is true if the value x corresponds to a send // on the channel, false if it is a zero value received because the channel is closed. -func (v *ChanValue) Recv() (x Value, ok bool) { +func (v *chanValue) Recv() (x Value, ok bool) { return v.recv(nil) } // TrySend attempts to sends x on the channel v but will not block. // It returns true if the value was sent, false otherwise. -func (v *ChanValue) TrySend(x Value) bool { +func (v *chanValue) TrySend(x Value) bool { var selected bool v.send(x, &selected) return selected @@ -741,25 +1253,29 @@ func (v *ChanValue) TrySend(x Value) bool { // If the receive can finish without blocking, TryRecv returns x != nil. // The boolean value ok is true if the value x corresponds to a send // on the channel, false if it is a zero value received because the channel is closed. -func (v *ChanValue) TryRecv() (x Value, ok bool) { +func (v *chanValue) TryRecv() (x Value, ok bool) { var selected bool x, ok = v.recv(&selected) if !selected { - return nil, false + return Value{}, false } return x, ok } // MakeChan creates a new channel with the specified type and buffer size. -func MakeChan(typ *ChanType, buffer int) *ChanValue { +func MakeChan(typ Type, buffer int) Value { + if typ.Kind() != Chan { + panic("reflect: MakeChan of non-chan type") + } if buffer < 0 { panic("MakeChan: negative buffer size") } - if typ.Dir() != BothDir { + if typ.ChanDir() != BothDir { panic("MakeChan: unidirectional channel type") } - v := MakeZero(typ).(*ChanValue) - *(**byte)(v.addr) = makechan((*runtime.ChanType)(unsafe.Pointer(typ)), uint32(buffer)) + v := Zero(typ) + ch := v.panicIfNot(Chan).(*chanValue) + *(**byte)(ch.addr) = makechan((*runtime.ChanType)(unsafe.Pointer(typ.(*commonType))), uint32(buffer)) return v } @@ -767,23 +1283,23 @@ func MakeChan(typ *ChanType, buffer int) *ChanValue { * func */ -// A FuncValue represents a function value. -type FuncValue struct { +// A funcValue represents a function value. +type funcValue struct { value "func" first *value isInterface bool } // IsNil returns whether v is a nil function. -func (v *FuncValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 } +func (v *funcValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 } // Get returns the uintptr value of v. // It is mainly useful for printing. -func (v *FuncValue) Get() uintptr { return *(*uintptr)(v.addr) } +func (v *funcValue) Get() uintptr { return *(*uintptr)(v.addr) } // Set assigns x to v. // The new value x must have the same type as v. -func (v *FuncValue) Set(x *FuncValue) { +func (v *funcValue) Set(x *funcValue) { if !v.CanSet() { panic(cannotSet) } @@ -792,21 +1308,23 @@ func (v *FuncValue) Set(x *FuncValue) { } // Set sets v to the value x. -func (v *FuncValue) SetValue(x Value) { v.Set(x.(*FuncValue)) } +func (v *funcValue) SetValue(x Value) { + v.Set(x.panicIfNot(Func).(*funcValue)) +} -// Method returns a FuncValue corresponding to v's i'th method. -// The arguments to a Call on the returned FuncValue -// should not include a receiver; the FuncValue will use v +// Method returns a funcValue corresponding to v's i'th method. +// The arguments to a Call on the returned funcValue +// should not include a receiver; the funcValue will use v // as the receiver. -func (v *value) Method(i int) *FuncValue { +func (v *value) Method(i int) Value { t := v.Type().uncommon() if t == nil || i < 0 || i >= len(t.methods) { - return nil + panic("reflect: Method index out of range") } p := &t.methods[i] fn := p.tfn - fv := &FuncValue{value: value{toType(*p.typ), addr(&fn), 0}, first: v, isInterface: false} - return fv + fv := &funcValue{value: value{toType(p.typ), addr(&fn), 0}, first: v, isInterface: false} + return Value{fv} } // implemented in ../pkg/runtime/*/asm.s @@ -820,23 +1338,23 @@ type tiny struct { // If fv is a method obtained by invoking Value.Method // (as opposed to Type.Method), Interface cannot return an // interface value, so it panics. -func (fv *FuncValue) Interface() interface{} { +func (fv *funcValue) Interface() interface{} { if fv.first != nil { - panic("FuncValue: cannot create interface value for method with bound receiver") + panic("funcValue: cannot create interface value for method with bound receiver") } return fv.value.Interface() } // Call calls the function fv with input parameters in. // It returns the function's output parameters as Values. -func (fv *FuncValue) Call(in []Value) []Value { - t := fv.Type().(*FuncType) +func (fv *funcValue) Call(in []Value) []Value { + t := fv.Type() nin := len(in) if fv.first != nil && !fv.isInterface { nin++ } if nin != t.NumIn() { - panic("FuncValue: wrong argument count") + panic("funcValue: wrong argument count") } nout := t.NumOut() @@ -906,7 +1424,7 @@ func (fv *FuncValue) Call(in []Value) []Value { a := uintptr(tv.Align()) off = (off + a - 1) &^ (a - 1) n := tv.Size() - memmove(addr(ptr+off), v.getAddr(), n) + memmove(addr(ptr+off), v.internal().getAddr(), n) off += n } off = (off + ptrSize - 1) &^ (ptrSize - 1) @@ -922,9 +1440,9 @@ func (fv *FuncValue) Call(in []Value) []Value { tv := t.Out(i) a := uintptr(tv.Align()) off = (off + a - 1) &^ (a - 1) - v := MakeZero(tv) + v := Zero(tv) n := tv.Size() - memmove(v.getAddr(), addr(ptr+off), n) + memmove(v.internal().getAddr(), addr(ptr+off), n) ret[i] = v off += n } @@ -936,40 +1454,37 @@ func (fv *FuncValue) Call(in []Value) []Value { * interface */ -// An InterfaceValue represents an interface value. -type InterfaceValue struct { +// An interfaceValue represents an interface value. +type interfaceValue struct { value "interface" } // IsNil returns whether v is a nil interface value. -func (v *InterfaceValue) IsNil() bool { return v.Interface() == nil } +func (v *interfaceValue) IsNil() bool { return v.Interface() == nil } // No single uinptr Get because v.Interface() is available. // Get returns the two words that represent an interface in the runtime. // Those words are useful only when playing unsafe games. -func (v *InterfaceValue) Get() [2]uintptr { +func (v *interfaceValue) Get() [2]uintptr { return *(*[2]uintptr)(v.addr) } // Elem returns the concrete value stored in the interface value v. -func (v *InterfaceValue) Elem() Value { return NewValue(v.Interface()) } +func (v *interfaceValue) Elem() Value { return NewValue(v.Interface()) } // ../runtime/reflect.cgo -func setiface(typ *InterfaceType, x *interface{}, addr addr) +func setiface(typ *interfaceType, x *interface{}, addr addr) // Set assigns x to v. -func (v *InterfaceValue) Set(x Value) { - var i interface{} - if x != nil { - i = x.Interface() - } +func (v *interfaceValue) Set(x Value) { + i := x.Interface() if !v.CanSet() { panic(cannotSet) } // Two different representations; see comment in Get. // Empty interface is easy. - t := v.typ.(*InterfaceType) + t := (*interfaceType)(unsafe.Pointer(v.typ.(*commonType))) if t.NumMethod() == 0 { *(*interface{})(v.addr) = i return @@ -980,16 +1495,16 @@ func (v *InterfaceValue) Set(x Value) { } // Set sets v to the value x. -func (v *InterfaceValue) SetValue(x Value) { v.Set(x) } +func (v *interfaceValue) SetValue(x Value) { v.Set(x) } -// Method returns a FuncValue corresponding to v's i'th method. -// The arguments to a Call on the returned FuncValue -// should not include a receiver; the FuncValue will use v +// Method returns a funcValue corresponding to v's i'th method. +// The arguments to a Call on the returned funcValue +// should not include a receiver; the funcValue will use v // as the receiver. -func (v *InterfaceValue) Method(i int) *FuncValue { - t := v.Type().(*InterfaceType) +func (v *interfaceValue) Method(i int) Value { + t := (*interfaceType)(unsafe.Pointer(v.Type().(*commonType))) if t == nil || i < 0 || i >= len(t.methods) { - return nil + panic("reflect: Method index out of range") } p := &t.methods[i] @@ -999,25 +1514,25 @@ func (v *InterfaceValue) Method(i int) *FuncValue { // Function pointer is at p.perm in the table. fn := tab.Fn[i] - fv := &FuncValue{value: value{toType(*p.typ), addr(&fn), 0}, first: data, isInterface: true} - return fv + fv := &funcValue{value: value{toType(p.typ), addr(&fn), 0}, first: data, isInterface: true} + return Value{fv} } /* * map */ -// A MapValue represents a map value. -type MapValue struct { +// A mapValue represents a map value. +type mapValue struct { value "map" } // IsNil returns whether v is a nil map value. -func (v *MapValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 } +func (v *mapValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 } // Set assigns x to v. // The new value x must have the same type as v. -func (v *MapValue) Set(x *MapValue) { +func (v *mapValue) Set(x *mapValue) { if !v.CanSet() { panic(cannotSet) } @@ -1030,17 +1545,13 @@ func (v *MapValue) Set(x *MapValue) { } // Set sets v to the value x. -func (v *MapValue) SetValue(x Value) { - if x == nil { - v.Set(nil) - return - } - v.Set(x.(*MapValue)) +func (v *mapValue) SetValue(x Value) { + v.Set(x.panicIfNot(Map).(*mapValue)) } // Get returns the uintptr value of v. // It is mainly useful for printing. -func (v *MapValue) Get() uintptr { return *(*uintptr)(v.addr) } +func (v *mapValue) Get() uintptr { return *(*uintptr)(v.addr) } // implemented in ../pkg/runtime/reflect.cgo func mapaccess(m, key, val *byte) bool @@ -1053,36 +1564,36 @@ func makemap(t *runtime.MapType) *byte // Elem returns the value associated with key in the map v. // It returns nil if key is not found in the map. -func (v *MapValue) Elem(key Value) Value { - t := v.Type().(*MapType) +func (v *mapValue) Elem(key Value) Value { + t := v.Type() typesMustMatch(t.Key(), key.Type()) m := *(**byte)(v.addr) if m == nil { - return nil + return Value{} } - newval := MakeZero(t.Elem()) - if !mapaccess(m, (*byte)(key.getAddr()), (*byte)(newval.getAddr())) { - return nil + newval := Zero(t.Elem()) + if !mapaccess(m, (*byte)(key.internal().getAddr()), (*byte)(newval.internal().getAddr())) { + return Value{} } return newval } // SetElem sets the value associated with key in the map v to val. // If val is nil, Put deletes the key from map. -func (v *MapValue) SetElem(key, val Value) { - t := v.Type().(*MapType) +func (v *mapValue) SetElem(key, val Value) { + t := v.Type() typesMustMatch(t.Key(), key.Type()) var vaddr *byte - if val != nil { + if val.IsValid() { typesMustMatch(t.Elem(), val.Type()) - vaddr = (*byte)(val.getAddr()) + vaddr = (*byte)(val.internal().getAddr()) } m := *(**byte)(v.addr) - mapassign(m, (*byte)(key.getAddr()), vaddr) + mapassign(m, (*byte)(key.internal().getAddr()), vaddr) } // Len returns the number of keys in the map v. -func (v *MapValue) Len() int { +func (v *mapValue) Len() int { m := *(**byte)(v.addr) if m == nil { return 0 @@ -1092,8 +1603,8 @@ func (v *MapValue) Len() int { // Keys returns a slice containing all the keys present in the map, // in unspecified order. -func (v *MapValue) Keys() []Value { - tk := v.Type().(*MapType).Key() +func (v *mapValue) Keys() []Value { + tk := v.Type().Key() m := *(**byte)(v.addr) mlen := int32(0) if m != nil { @@ -1103,8 +1614,8 @@ func (v *MapValue) Keys() []Value { a := make([]Value, mlen) var i int for i = 0; i < len(a); i++ { - k := MakeZero(tk) - if !mapiterkey(it, (*byte)(k.getAddr())) { + k := Zero(tk) + if !mapiterkey(it, (*byte)(k.internal().getAddr())) { break } a[i] = k @@ -1114,9 +1625,13 @@ func (v *MapValue) Keys() []Value { } // MakeMap creates a new map of the specified type. -func MakeMap(typ *MapType) *MapValue { - v := MakeZero(typ).(*MapValue) - *(**byte)(v.addr) = makemap((*runtime.MapType)(unsafe.Pointer(typ))) +func MakeMap(typ Type) Value { + if typ.Kind() != Map { + panic("reflect: MakeMap of non-map type") + } + v := Zero(typ) + m := v.panicIfNot(Map).(*mapValue) + *(**byte)(m.addr) = makemap((*runtime.MapType)(unsafe.Pointer(typ.(*commonType)))) return v } @@ -1124,21 +1639,21 @@ func MakeMap(typ *MapType) *MapValue { * ptr */ -// A PtrValue represents a pointer. -type PtrValue struct { +// A ptrValue represents a pointer. +type ptrValue struct { value "ptr" } // IsNil returns whether v is a nil pointer. -func (v *PtrValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 } +func (v *ptrValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 } // Get returns the uintptr value of v. // It is mainly useful for printing. -func (v *PtrValue) Get() uintptr { return *(*uintptr)(v.addr) } +func (v *ptrValue) Get() uintptr { return *(*uintptr)(v.addr) } // Set assigns x to v. // The new value x must have the same type as v, and x.Elem().CanSet() must be true. -func (v *PtrValue) Set(x *PtrValue) { +func (v *ptrValue) Set(x *ptrValue) { if x == nil { *(**uintptr)(v.addr) = nil return @@ -1156,25 +1671,21 @@ func (v *PtrValue) Set(x *PtrValue) { } // Set sets v to the value x. -func (v *PtrValue) SetValue(x Value) { - if x == nil { - v.Set(nil) - return - } - v.Set(x.(*PtrValue)) +func (v *ptrValue) SetValue(x Value) { + v.Set(x.panicIfNot(Ptr).(*ptrValue)) } // PointTo changes v to point to x. // If x is a nil Value, PointTo sets v to nil. -func (v *PtrValue) PointTo(x Value) { - if x == nil { +func (v *ptrValue) PointTo(x Value) { + if !x.IsValid() { *(**uintptr)(v.addr) = nil return } if !x.CanSet() { panic("cannot set x; cannot point to x") } - typesMustMatch(v.typ.(*PtrType).Elem(), x.Type()) + typesMustMatch(v.typ.Elem(), x.Type()) // TODO: This will have to move into the runtime // once the new gc goes in. *(*uintptr)(v.addr) = x.UnsafeAddr() @@ -1182,39 +1693,39 @@ func (v *PtrValue) PointTo(x Value) { // Elem returns the value that v points to. // If v is a nil pointer, Elem returns a nil Value. -func (v *PtrValue) Elem() Value { +func (v *ptrValue) Elem() Value { if v.IsNil() { - return nil + return Value{} } flag := canAddr if v.flag&canStore != 0 { flag |= canSet | canStore } - return newValue(v.typ.(*PtrType).Elem(), *(*addr)(v.addr), flag) + return newValue(v.typ.Elem(), *(*addr)(v.addr), flag) } // Indirect returns the value that v points to. // If v is a nil pointer, Indirect returns a nil Value. // If v is not a pointer, Indirect returns v. func Indirect(v Value) Value { - if pv, ok := v.(*PtrValue); ok { - return pv.Elem() + if v.Kind() != Ptr { + return v } - return v + return v.panicIfNot(Ptr).(*ptrValue).Elem() } /* * struct */ -// A StructValue represents a struct value. -type StructValue struct { +// A structValue represents a struct value. +type structValue struct { value "struct" } // Set assigns x to v. // The new value x must have the same type as v. -func (v *StructValue) Set(x *StructValue) { +func (v *structValue) Set(x *structValue) { // TODO: This will have to move into the runtime // once the gc goes in. if !v.CanSet() { @@ -1225,13 +1736,15 @@ func (v *StructValue) Set(x *StructValue) { } // Set sets v to the value x. -func (v *StructValue) SetValue(x Value) { v.Set(x.(*StructValue)) } +func (v *structValue) SetValue(x Value) { + v.Set(x.panicIfNot(Struct).(*structValue)) +} // Field returns the i'th field of the struct. -func (v *StructValue) Field(i int) Value { - t := v.typ.(*StructType) +func (v *structValue) Field(i int) Value { + t := v.typ if i < 0 || i >= t.NumField() { - return nil + panic("reflect: Field index out of range") } f := t.Field(i) flag := v.flag @@ -1243,102 +1756,102 @@ func (v *StructValue) Field(i int) Value { } // FieldByIndex returns the nested field corresponding to index. -func (t *StructValue) FieldByIndex(index []int) (v Value) { - v = t +func (t *structValue) FieldByIndex(index []int) (v Value) { + v = Value{t} for i, x := range index { if i > 0 { - if p, ok := v.(*PtrValue); ok { - v = p.Elem() + if v.Kind() == Ptr { + v = v.Elem() } - if s, ok := v.(*StructValue); ok { - t = s - } else { - v = nil - return + if v.Kind() != Struct { + return Value{} } } - v = t.Field(x) + v = v.Field(x) } return } // FieldByName returns the struct field with the given name. // The result is nil if no field was found. -func (t *StructValue) FieldByName(name string) Value { - if f, ok := t.Type().(*StructType).FieldByName(name); ok { +func (t *structValue) FieldByName(name string) Value { + if f, ok := t.Type().FieldByName(name); ok { return t.FieldByIndex(f.Index) } - return nil + return Value{} } // FieldByNameFunc returns the struct field with a name that satisfies the // match function. // The result is nil if no field was found. -func (t *StructValue) FieldByNameFunc(match func(string) bool) Value { - if f, ok := t.Type().(*StructType).FieldByNameFunc(match); ok { +func (t *structValue) FieldByNameFunc(match func(string) bool) Value { + if f, ok := t.Type().FieldByNameFunc(match); ok { return t.FieldByIndex(f.Index) } - return nil + return Value{} } // NumField returns the number of fields in the struct. -func (v *StructValue) NumField() int { return v.typ.(*StructType).NumField() } +func (v *structValue) NumField() int { return v.typ.NumField() } /* * constructors */ // NewValue returns a new Value initialized to the concrete value -// stored in the interface i. NewValue(nil) returns nil. +// stored in the interface i. NewValue(nil) returns the zero Value. func NewValue(i interface{}) Value { if i == nil { - return nil + return Value{} } - t, a := unsafe.Reflect(i) - return newValue(toType(t), addr(a), canSet|canAddr|canStore) + _, a := unsafe.Reflect(i) + return newValue(Typeof(i), addr(a), canSet|canAddr|canStore) } func newValue(typ Type, addr addr, flag uint32) Value { v := value{typ, addr, flag} - switch typ.(type) { - case *ArrayType: - return &ArrayValue{v} - case *BoolType: - return &BoolValue{v} - case *ChanType: - return &ChanValue{v} - case *FloatType: - return &FloatValue{v} - case *FuncType: - return &FuncValue{value: v} - case *ComplexType: - return &ComplexValue{v} - case *IntType: - return &IntValue{v} - case *InterfaceType: - return &InterfaceValue{v} - case *MapType: - return &MapValue{v} - case *PtrType: - return &PtrValue{v} - case *SliceType: - return &SliceValue{v} - case *StringType: - return &StringValue{v} - case *StructType: - return &StructValue{v} - case *UintType: - return &UintValue{v} - case *UnsafePointerType: - return &UnsafePointerValue{v} + switch typ.Kind() { + case Array: + return Value{&arrayValue{v}} + case Bool: + return Value{&boolValue{v}} + case Chan: + return Value{&chanValue{v}} + case Float32, Float64: + return Value{&floatValue{v}} + case Func: + return Value{&funcValue{value: v}} + case Complex64, Complex128: + return Value{&complexValue{v}} + case Int, Int8, Int16, Int32, Int64: + return Value{&intValue{v}} + case Interface: + return Value{&interfaceValue{v}} + case Map: + return Value{&mapValue{v}} + case Ptr: + return Value{&ptrValue{v}} + case Slice: + return Value{&sliceValue{v}} + case String: + return Value{&stringValue{v}} + case Struct: + return Value{&structValue{v}} + case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr: + return Value{&uintValue{v}} + case UnsafePointer: + return Value{&unsafePointerValue{v}} } panic("newValue" + typ.String()) } -// MakeZero returns a zero Value for the specified Type. -func MakeZero(typ Type) Value { +// Zero returns a Value representing a zero value for the specified type. +// The result is different from the zero value of the Value struct, +// which represents no value at all. +// For example, Zero(Typeof(42)) returns a Value with Kind Int and value 0. +func Zero(typ Type) Value { if typ == nil { - return nil + panic("reflect: Zero(nil)") } return newValue(typ, addr(unsafe.New(typ)), canSet|canAddr|canStore) }