mirror of https://github.com/golang/go.git
go/types, types2: remove code for infer1
Fixes #58283. Change-Id: I4a82083cddfed1b1be7776464f926a4c69a35e10 Reviewed-on: https://go-review.googlesource.com/c/go/+/470995 Reviewed-by: Robert Griesemer <gri@google.com> TryBot-Result: Gopher Robot <gobot@golang.org> Auto-Submit: Robert Griesemer <gri@google.com> Reviewed-by: Robert Findley <rfindley@google.com> Run-TryBot: Robert Griesemer <gri@google.com>
This commit is contained in:
parent
969c3ba839
commit
d81ae7cfc7
|
|
@ -9,210 +9,9 @@ package types2
|
|||
import (
|
||||
"cmd/compile/internal/syntax"
|
||||
"fmt"
|
||||
. "internal/types/errors"
|
||||
"strings"
|
||||
)
|
||||
|
||||
// infer1 is an implementation of infer.
|
||||
// Inference proceeds as follows. Starting with given type arguments:
|
||||
//
|
||||
// 1. apply FTI (function type inference) with typed arguments,
|
||||
// 2. apply CTI (constraint type inference),
|
||||
// 3. apply FTI with untyped function arguments,
|
||||
// 4. apply CTI.
|
||||
//
|
||||
// The process stops as soon as all type arguments are known or an error occurs.
|
||||
func (check *Checker) infer1(pos syntax.Pos, tparams []*TypeParam, targs []Type, params *Tuple, args []*operand, silent bool) (result []Type) {
|
||||
if debug {
|
||||
defer func() {
|
||||
assert(result == nil || len(result) == len(tparams))
|
||||
for _, targ := range result {
|
||||
assert(targ != nil)
|
||||
}
|
||||
//check.dump("### inferred targs = %s", result)
|
||||
}()
|
||||
}
|
||||
|
||||
if traceInference {
|
||||
check.dump("-- inferA %s%s ➞ %s", tparams, params, targs)
|
||||
defer func() {
|
||||
check.dump("=> inferA %s ➞ %s", tparams, result)
|
||||
}()
|
||||
}
|
||||
|
||||
// There must be at least one type parameter, and no more type arguments than type parameters.
|
||||
n := len(tparams)
|
||||
assert(n > 0 && len(targs) <= n)
|
||||
|
||||
// Function parameters and arguments must match in number.
|
||||
assert(params.Len() == len(args))
|
||||
|
||||
// If we already have all type arguments, we're done.
|
||||
if len(targs) == n {
|
||||
return targs
|
||||
}
|
||||
// len(targs) < n
|
||||
|
||||
// Rename type parameters to avoid conflicts in recursive instantiation scenarios.
|
||||
tparams, params = check.renameTParams(pos, tparams, params)
|
||||
|
||||
// --- 1 ---
|
||||
// Continue with the type arguments we have. Avoid matching generic
|
||||
// parameters that already have type arguments against function arguments:
|
||||
// It may fail because matching uses type identity while parameter passing
|
||||
// uses assignment rules. Instantiate the parameter list with the type
|
||||
// arguments we have, and continue with that parameter list.
|
||||
|
||||
// First, make sure we have a "full" list of type arguments, some of which
|
||||
// may be nil (unknown). Make a copy so as to not clobber the incoming slice.
|
||||
if len(targs) < n {
|
||||
targs2 := make([]Type, n)
|
||||
copy(targs2, targs)
|
||||
targs = targs2
|
||||
}
|
||||
// len(targs) == n
|
||||
|
||||
// Substitute type arguments for their respective type parameters in params,
|
||||
// if any. Note that nil targs entries are ignored by check.subst.
|
||||
// TODO(gri) Can we avoid this (we're setting known type arguments below,
|
||||
// but that doesn't impact the isParameterized check for now).
|
||||
if params.Len() > 0 {
|
||||
smap := makeSubstMap(tparams, targs)
|
||||
params = check.subst(nopos, params, smap, nil, check.context()).(*Tuple)
|
||||
}
|
||||
|
||||
// Unify parameter and argument types for generic parameters with typed arguments
|
||||
// and collect the indices of generic parameters with untyped arguments.
|
||||
// Terminology: generic parameter = function parameter with a type-parameterized type
|
||||
u := newUnifier(tparams, targs)
|
||||
|
||||
errorf := func(kind string, tpar, targ Type, arg *operand) {
|
||||
if silent {
|
||||
return
|
||||
}
|
||||
// provide a better error message if we can
|
||||
targs := u.inferred(tparams)
|
||||
if targs[0] == nil {
|
||||
// The first type parameter couldn't be inferred.
|
||||
// If none of them could be inferred, don't try
|
||||
// to provide the inferred type in the error msg.
|
||||
allFailed := true
|
||||
for _, targ := range targs {
|
||||
if targ != nil {
|
||||
allFailed = false
|
||||
break
|
||||
}
|
||||
}
|
||||
if allFailed {
|
||||
check.errorf(arg, CannotInferTypeArgs, "%s %s of %s does not match %s (cannot infer %s)", kind, targ, arg.expr, tpar, typeParamsString(tparams))
|
||||
return
|
||||
}
|
||||
}
|
||||
smap := makeSubstMap(tparams, targs)
|
||||
// TODO(gri): pass a poser here, rather than arg.Pos().
|
||||
inferred := check.subst(arg.Pos(), tpar, smap, nil, check.context())
|
||||
// CannotInferTypeArgs indicates a failure of inference, though the actual
|
||||
// error may be better attributed to a user-provided type argument (hence
|
||||
// InvalidTypeArg). We can't differentiate these cases, so fall back on
|
||||
// the more general CannotInferTypeArgs.
|
||||
if inferred != tpar {
|
||||
check.errorf(arg, CannotInferTypeArgs, "%s %s of %s does not match inferred type %s for %s", kind, targ, arg.expr, inferred, tpar)
|
||||
} else {
|
||||
check.errorf(arg, CannotInferTypeArgs, "%s %s of %s does not match %s", kind, targ, arg.expr, tpar)
|
||||
}
|
||||
}
|
||||
|
||||
// indices of the generic parameters with untyped arguments - save for later
|
||||
var indices []int
|
||||
for i, arg := range args {
|
||||
par := params.At(i)
|
||||
// If we permit bidirectional unification, this conditional code needs to be
|
||||
// executed even if par.typ is not parameterized since the argument may be a
|
||||
// generic function (for which we want to infer its type arguments).
|
||||
if isParameterized(tparams, par.typ) {
|
||||
if arg.mode == invalid {
|
||||
// An error was reported earlier. Ignore this targ
|
||||
// and continue, we may still be able to infer all
|
||||
// targs resulting in fewer follow-on errors.
|
||||
continue
|
||||
}
|
||||
if targ := arg.typ; isTyped(targ) {
|
||||
// If we permit bidirectional unification, and targ is
|
||||
// a generic function, we need to initialize u.y with
|
||||
// the respective type parameters of targ.
|
||||
if !u.unify(par.typ, targ) {
|
||||
errorf("type", par.typ, targ, arg)
|
||||
return nil
|
||||
}
|
||||
} else if _, ok := par.typ.(*TypeParam); ok {
|
||||
// Since default types are all basic (i.e., non-composite) types, an
|
||||
// untyped argument will never match a composite parameter type; the
|
||||
// only parameter type it can possibly match against is a *TypeParam.
|
||||
// Thus, for untyped arguments we only need to look at parameter types
|
||||
// that are single type parameters.
|
||||
indices = append(indices, i)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// If we've got all type arguments, we're done.
|
||||
targs = u.inferred(tparams)
|
||||
if u.unknowns() == 0 {
|
||||
return targs
|
||||
}
|
||||
|
||||
// --- 2 ---
|
||||
// See how far we get with constraint type inference.
|
||||
// Note that even if we don't have any type arguments, constraint type inference
|
||||
// may produce results for constraints that explicitly specify a type.
|
||||
targs, index := check.inferB(tparams, targs)
|
||||
if targs == nil || index < 0 {
|
||||
return targs
|
||||
}
|
||||
|
||||
// --- 3 ---
|
||||
// Use any untyped arguments to infer additional type arguments.
|
||||
// Some generic parameters with untyped arguments may have been given
|
||||
// a type by now, we can ignore them.
|
||||
for _, i := range indices {
|
||||
tpar := params.At(i).typ.(*TypeParam) // is type parameter by construction of indices
|
||||
// Only consider untyped arguments for which the corresponding type
|
||||
// parameter doesn't have an inferred type yet.
|
||||
if targs[tpar.index] == nil {
|
||||
arg := args[i]
|
||||
targ := Default(arg.typ)
|
||||
// The default type for an untyped nil is untyped nil. We must not
|
||||
// infer an untyped nil type as type parameter type. Ignore untyped
|
||||
// nil by making sure all default argument types are typed.
|
||||
if isTyped(targ) && !u.unify(tpar, targ) {
|
||||
errorf("default type", tpar, targ, arg)
|
||||
return nil
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// If we've got all type arguments, we're done.
|
||||
targs = u.inferred(tparams)
|
||||
if u.unknowns() == 0 {
|
||||
return targs
|
||||
}
|
||||
|
||||
// --- 4 ---
|
||||
// Again, follow up with constraint type inference.
|
||||
targs, index = check.inferB(tparams, targs)
|
||||
if targs == nil || index < 0 {
|
||||
return targs
|
||||
}
|
||||
|
||||
// At least one type argument couldn't be inferred.
|
||||
assert(targs != nil && index >= 0 && targs[index] == nil)
|
||||
tpar := tparams[index]
|
||||
if !silent {
|
||||
check.errorf(pos, CannotInferTypeArgs, "cannot infer %s (%s)", tpar.obj.name, tpar.obj.pos)
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
// renameTParams renames the type parameters in a function signature described by its
|
||||
// type and ordinary parameters (tparams and params) such that each type parameter is
|
||||
// given a new identity. renameTParams returns the new type and ordinary parameters.
|
||||
|
|
@ -388,203 +187,6 @@ func (w *tpWalker) isParameterizedTypeList(list []Type) bool {
|
|||
return false
|
||||
}
|
||||
|
||||
// inferB returns the list of actual type arguments inferred from the type parameters'
|
||||
// bounds and an initial set of type arguments. If type inference is impossible because
|
||||
// unification fails, an error is reported if report is set to true, the resulting types
|
||||
// list is nil, and index is 0.
|
||||
// Otherwise, types is the list of inferred type arguments, and index is the index of the
|
||||
// first type argument in that list that couldn't be inferred (and thus is nil). If all
|
||||
// type arguments were inferred successfully, index is < 0. The number of type arguments
|
||||
// provided may be less than the number of type parameters, but there must be at least one.
|
||||
func (check *Checker) inferB(tparams []*TypeParam, targs []Type) (types []Type, index int) {
|
||||
assert(len(tparams) >= len(targs) && len(targs) > 0)
|
||||
|
||||
if traceInference {
|
||||
check.dump("-- inferB %s ➞ %s", tparams, targs)
|
||||
defer func() {
|
||||
check.dump("=> inferB %s ➞ %s", tparams, types)
|
||||
}()
|
||||
}
|
||||
|
||||
// Unify type parameters with their constraints.
|
||||
u := newUnifier(tparams, targs)
|
||||
|
||||
// Repeatedly apply constraint type inference as long as
|
||||
// there are still unknown type arguments and progress is
|
||||
// being made.
|
||||
//
|
||||
// This is an O(n^2) algorithm where n is the number of
|
||||
// type parameters: if there is progress (and iteration
|
||||
// continues), at least one type argument is inferred
|
||||
// per iteration and we have a doubly nested loop.
|
||||
// In practice this is not a problem because the number
|
||||
// of type parameters tends to be very small (< 5 or so).
|
||||
// (It should be possible for unification to efficiently
|
||||
// signal newly inferred type arguments; then the loops
|
||||
// here could handle the respective type parameters only,
|
||||
// but that will come at a cost of extra complexity which
|
||||
// may not be worth it.)
|
||||
for n := u.unknowns(); n > 0; {
|
||||
nn := n
|
||||
|
||||
for _, tpar := range tparams {
|
||||
// If there is a core term (i.e., a core type with tilde information)
|
||||
// unify the type parameter with the core type.
|
||||
if core, single := coreTerm(tpar); core != nil {
|
||||
if traceInference {
|
||||
u.tracef("core(%s) = %s (single = %v)", tpar, core, single)
|
||||
}
|
||||
// A type parameter can be unified with its core type in two cases.
|
||||
tx := u.at(tpar)
|
||||
switch {
|
||||
case tx != nil:
|
||||
// The corresponding type argument tx is known.
|
||||
// In this case, if the core type has a tilde, the type argument's underlying
|
||||
// type must match the core type, otherwise the type argument and the core type
|
||||
// must match.
|
||||
// If tx is an external type parameter, don't consider its underlying type
|
||||
// (which is an interface). Core type unification will attempt to unify against
|
||||
// core.typ.
|
||||
// Note also that even with inexact unification we cannot leave away the under
|
||||
// call here because it's possible that both tx and core.typ are named types,
|
||||
// with under(tx) being a (named) basic type matching core.typ. Such cases do
|
||||
// not match with inexact unification.
|
||||
if core.tilde && !isTypeParam(tx) {
|
||||
tx = under(tx)
|
||||
}
|
||||
// Unification may fail because it operates with limited information (core type),
|
||||
// even if a given type argument satisfies the corresponding type constraint.
|
||||
// For instance, given [P T1|T2, ...] where the type argument for P is (named
|
||||
// type) T1, and T1 and T2 have the same built-in (named) type T0 as underlying
|
||||
// type, the core type will be the named type T0, which doesn't match T1.
|
||||
// Yet the instantiation of P with T1 is clearly valid (see go.dev/issue/53650).
|
||||
// Reporting an error if unification fails would be incorrect in this case.
|
||||
// On the other hand, it is safe to ignore failing unification during constraint
|
||||
// type inference because if the failure is true, an error will be reported when
|
||||
// checking instantiation.
|
||||
u.unify(tx, core.typ)
|
||||
|
||||
case single && !core.tilde:
|
||||
// The corresponding type argument tx is unknown and there's a single
|
||||
// specific type and no tilde.
|
||||
// In this case the type argument must be that single type; set it.
|
||||
u.set(tpar, core.typ)
|
||||
|
||||
default:
|
||||
// Unification is not possible and no progress was made.
|
||||
continue
|
||||
}
|
||||
|
||||
// The number of known type arguments may have changed.
|
||||
nn = u.unknowns()
|
||||
if nn == 0 {
|
||||
break // all type arguments are known
|
||||
}
|
||||
} else {
|
||||
if traceInference {
|
||||
u.tracef("core(%s) = nil", tpar)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
assert(nn <= n)
|
||||
if nn == n {
|
||||
break // no progress
|
||||
}
|
||||
n = nn
|
||||
}
|
||||
|
||||
// u.inferred(tparams) now contains the incoming type arguments plus any additional type
|
||||
// arguments which were inferred from core terms. The newly inferred non-nil
|
||||
// entries may still contain references to other type parameters.
|
||||
// For instance, for [A any, B interface{ []C }, C interface{ *A }], if A == int
|
||||
// was given, unification produced the type list [int, []C, *A]. We eliminate the
|
||||
// remaining type parameters by substituting the type parameters in this type list
|
||||
// until nothing changes anymore.
|
||||
types = u.inferred(tparams)
|
||||
if debug {
|
||||
for i, targ := range targs {
|
||||
assert(targ == nil || types[i] == targ)
|
||||
}
|
||||
}
|
||||
|
||||
// The data structure of each (provided or inferred) type represents a graph, where
|
||||
// each node corresponds to a type and each (directed) vertex points to a component
|
||||
// type. The substitution process described above repeatedly replaces type parameter
|
||||
// nodes in these graphs with the graphs of the types the type parameters stand for,
|
||||
// which creates a new (possibly bigger) graph for each type.
|
||||
// The substitution process will not stop if the replacement graph for a type parameter
|
||||
// also contains that type parameter.
|
||||
// For instance, for [A interface{ *A }], without any type argument provided for A,
|
||||
// unification produces the type list [*A]. Substituting A in *A with the value for
|
||||
// A will lead to infinite expansion by producing [**A], [****A], [********A], etc.,
|
||||
// because the graph A -> *A has a cycle through A.
|
||||
// Generally, cycles may occur across multiple type parameters and inferred types
|
||||
// (for instance, consider [P interface{ *Q }, Q interface{ func(P) }]).
|
||||
// We eliminate cycles by walking the graphs for all type parameters. If a cycle
|
||||
// through a type parameter is detected, cycleFinder nils out the respective type
|
||||
// which kills the cycle; this also means that the respective type could not be
|
||||
// inferred.
|
||||
//
|
||||
// TODO(gri) If useful, we could report the respective cycle as an error. We don't
|
||||
// do this now because type inference will fail anyway, and furthermore,
|
||||
// constraints with cycles of this kind cannot currently be satisfied by
|
||||
// any user-supplied type. But should that change, reporting an error
|
||||
// would be wrong.
|
||||
w := cycleFinder{tparams, types, make(map[Type]bool)}
|
||||
for _, t := range tparams {
|
||||
w.typ(t) // t != nil
|
||||
}
|
||||
|
||||
// dirty tracks the indices of all types that may still contain type parameters.
|
||||
// We know that nil type entries and entries corresponding to provided (non-nil)
|
||||
// type arguments are clean, so exclude them from the start.
|
||||
var dirty []int
|
||||
for i, typ := range types {
|
||||
if typ != nil && (i >= len(targs) || targs[i] == nil) {
|
||||
dirty = append(dirty, i)
|
||||
}
|
||||
}
|
||||
|
||||
for len(dirty) > 0 {
|
||||
// TODO(gri) Instead of creating a new substMap for each iteration,
|
||||
// provide an update operation for substMaps and only change when
|
||||
// needed. Optimization.
|
||||
smap := makeSubstMap(tparams, types)
|
||||
n := 0
|
||||
for _, index := range dirty {
|
||||
t0 := types[index]
|
||||
if t1 := check.subst(nopos, t0, smap, nil, check.context()); t1 != t0 {
|
||||
types[index] = t1
|
||||
dirty[n] = index
|
||||
n++
|
||||
}
|
||||
}
|
||||
dirty = dirty[:n]
|
||||
}
|
||||
|
||||
// Once nothing changes anymore, we may still have type parameters left;
|
||||
// e.g., a constraint with core type *P may match a type parameter Q but
|
||||
// we don't have any type arguments to fill in for *P or Q (go.dev/issue/45548).
|
||||
// Don't let such inferences escape, instead nil them out.
|
||||
for i, typ := range types {
|
||||
if typ != nil && isParameterized(tparams, typ) {
|
||||
types[i] = nil
|
||||
}
|
||||
}
|
||||
|
||||
// update index
|
||||
index = -1
|
||||
for i, typ := range types {
|
||||
if typ == nil {
|
||||
index = i
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
// If the type parameter has a single specific type S, coreTerm returns (S, true).
|
||||
// Otherwise, if tpar has a core type T, it returns a term corresponding to that
|
||||
// core type and false. In that case, if any term of tpar has a tilde, the core
|
||||
|
|
|
|||
|
|
@ -11,39 +11,13 @@ import (
|
|||
. "internal/types/errors"
|
||||
)
|
||||
|
||||
// If compareWithInfer1, infer2 results must match infer1 results.
|
||||
// Disable before releasing Go 1.21.
|
||||
const compareWithInfer1 = false
|
||||
|
||||
// infer attempts to infer the complete set of type arguments for generic function instantiation/call
|
||||
// based on the given type parameters tparams, type arguments targs, function parameters params, and
|
||||
// function arguments args, if any. There must be at least one type parameter, no more type arguments
|
||||
// than type parameters, and params and args must match in number (incl. zero).
|
||||
// If successful, infer returns the complete list of given and inferred type arguments, one for each
|
||||
// type parameter. Otherwise the result is nil and appropriate errors will be reported.
|
||||
func (check *Checker) infer(pos syntax.Pos, tparams []*TypeParam, targs []Type, params *Tuple, args []*operand) []Type {
|
||||
r2 := check.infer2(pos, tparams, targs, params, args)
|
||||
|
||||
if compareWithInfer1 {
|
||||
r1 := check.infer1(pos, tparams, targs, params, args, r2 == nil) // be silent on errors if infer2 failed
|
||||
assert(len(r2) == len(r1))
|
||||
for i, targ2 := range r2 {
|
||||
targ1 := r1[i]
|
||||
var c comparer
|
||||
c.ignoreInvalids = true
|
||||
if !c.identical(targ2, targ1, nil) {
|
||||
tpar := tparams[i]
|
||||
check.dump("%v: type argument for %s: infer1: %s, infer2: %s", tpar.Obj().Pos(), tpar, targ1, targ2)
|
||||
panic("inconsistent type inference")
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return r2
|
||||
}
|
||||
|
||||
// infer2 is an implementation of infer.
|
||||
func (check *Checker) infer2(pos syntax.Pos, tparams []*TypeParam, targs []Type, params *Tuple, args []*operand) (inferred []Type) {
|
||||
func (check *Checker) infer(pos syntax.Pos, tparams []*TypeParam, targs []Type, params *Tuple, args []*operand) (inferred []Type) {
|
||||
if debug {
|
||||
defer func() {
|
||||
assert(inferred == nil || len(inferred) == len(tparams))
|
||||
|
|
@ -54,7 +28,7 @@ func (check *Checker) infer2(pos syntax.Pos, tparams []*TypeParam, targs []Type,
|
|||
}
|
||||
|
||||
if traceInference {
|
||||
check.dump("-- infer2 %s%s ➞ %s", tparams, params, targs)
|
||||
check.dump("-- infer %s%s ➞ %s", tparams, params, targs)
|
||||
defer func() {
|
||||
check.dump("=> %s ➞ %s\n", tparams, inferred)
|
||||
}()
|
||||
|
|
|
|||
|
|
@ -11,210 +11,9 @@ package types
|
|||
import (
|
||||
"fmt"
|
||||
"go/token"
|
||||
. "internal/types/errors"
|
||||
"strings"
|
||||
)
|
||||
|
||||
// infer1 is an implementation of infer.
|
||||
// Inference proceeds as follows. Starting with given type arguments:
|
||||
//
|
||||
// 1. apply FTI (function type inference) with typed arguments,
|
||||
// 2. apply CTI (constraint type inference),
|
||||
// 3. apply FTI with untyped function arguments,
|
||||
// 4. apply CTI.
|
||||
//
|
||||
// The process stops as soon as all type arguments are known or an error occurs.
|
||||
func (check *Checker) infer1(posn positioner, tparams []*TypeParam, targs []Type, params *Tuple, args []*operand, silent bool) (result []Type) {
|
||||
if debug {
|
||||
defer func() {
|
||||
assert(result == nil || len(result) == len(tparams))
|
||||
for _, targ := range result {
|
||||
assert(targ != nil)
|
||||
}
|
||||
//check.dump("### inferred targs = %s", result)
|
||||
}()
|
||||
}
|
||||
|
||||
if traceInference {
|
||||
check.dump("-- inferA %s%s ➞ %s", tparams, params, targs)
|
||||
defer func() {
|
||||
check.dump("=> inferA %s ➞ %s", tparams, result)
|
||||
}()
|
||||
}
|
||||
|
||||
// There must be at least one type parameter, and no more type arguments than type parameters.
|
||||
n := len(tparams)
|
||||
assert(n > 0 && len(targs) <= n)
|
||||
|
||||
// Function parameters and arguments must match in number.
|
||||
assert(params.Len() == len(args))
|
||||
|
||||
// If we already have all type arguments, we're done.
|
||||
if len(targs) == n {
|
||||
return targs
|
||||
}
|
||||
// len(targs) < n
|
||||
|
||||
// Rename type parameters to avoid conflicts in recursive instantiation scenarios.
|
||||
tparams, params = check.renameTParams(posn.Pos(), tparams, params)
|
||||
|
||||
// --- 1 ---
|
||||
// Continue with the type arguments we have. Avoid matching generic
|
||||
// parameters that already have type arguments against function arguments:
|
||||
// It may fail because matching uses type identity while parameter passing
|
||||
// uses assignment rules. Instantiate the parameter list with the type
|
||||
// arguments we have, and continue with that parameter list.
|
||||
|
||||
// First, make sure we have a "full" list of type arguments, some of which
|
||||
// may be nil (unknown). Make a copy so as to not clobber the incoming slice.
|
||||
if len(targs) < n {
|
||||
targs2 := make([]Type, n)
|
||||
copy(targs2, targs)
|
||||
targs = targs2
|
||||
}
|
||||
// len(targs) == n
|
||||
|
||||
// Substitute type arguments for their respective type parameters in params,
|
||||
// if any. Note that nil targs entries are ignored by check.subst.
|
||||
// TODO(gri) Can we avoid this (we're setting known type arguments below,
|
||||
// but that doesn't impact the isParameterized check for now).
|
||||
if params.Len() > 0 {
|
||||
smap := makeSubstMap(tparams, targs)
|
||||
params = check.subst(nopos, params, smap, nil, check.context()).(*Tuple)
|
||||
}
|
||||
|
||||
// Unify parameter and argument types for generic parameters with typed arguments
|
||||
// and collect the indices of generic parameters with untyped arguments.
|
||||
// Terminology: generic parameter = function parameter with a type-parameterized type
|
||||
u := newUnifier(tparams, targs)
|
||||
|
||||
errorf := func(kind string, tpar, targ Type, arg *operand) {
|
||||
if silent {
|
||||
return
|
||||
}
|
||||
// provide a better error message if we can
|
||||
targs := u.inferred(tparams)
|
||||
if targs[0] == nil {
|
||||
// The first type parameter couldn't be inferred.
|
||||
// If none of them could be inferred, don't try
|
||||
// to provide the inferred type in the error msg.
|
||||
allFailed := true
|
||||
for _, targ := range targs {
|
||||
if targ != nil {
|
||||
allFailed = false
|
||||
break
|
||||
}
|
||||
}
|
||||
if allFailed {
|
||||
check.errorf(arg, CannotInferTypeArgs, "%s %s of %s does not match %s (cannot infer %s)", kind, targ, arg.expr, tpar, typeParamsString(tparams))
|
||||
return
|
||||
}
|
||||
}
|
||||
smap := makeSubstMap(tparams, targs)
|
||||
// TODO(gri): pass a poser here, rather than arg.Pos().
|
||||
inferred := check.subst(arg.Pos(), tpar, smap, nil, check.context())
|
||||
// CannotInferTypeArgs indicates a failure of inference, though the actual
|
||||
// error may be better attributed to a user-provided type argument (hence
|
||||
// InvalidTypeArg). We can't differentiate these cases, so fall back on
|
||||
// the more general CannotInferTypeArgs.
|
||||
if inferred != tpar {
|
||||
check.errorf(arg, CannotInferTypeArgs, "%s %s of %s does not match inferred type %s for %s", kind, targ, arg.expr, inferred, tpar)
|
||||
} else {
|
||||
check.errorf(arg, CannotInferTypeArgs, "%s %s of %s does not match %s", kind, targ, arg.expr, tpar)
|
||||
}
|
||||
}
|
||||
|
||||
// indices of the generic parameters with untyped arguments - save for later
|
||||
var indices []int
|
||||
for i, arg := range args {
|
||||
par := params.At(i)
|
||||
// If we permit bidirectional unification, this conditional code needs to be
|
||||
// executed even if par.typ is not parameterized since the argument may be a
|
||||
// generic function (for which we want to infer its type arguments).
|
||||
if isParameterized(tparams, par.typ) {
|
||||
if arg.mode == invalid {
|
||||
// An error was reported earlier. Ignore this targ
|
||||
// and continue, we may still be able to infer all
|
||||
// targs resulting in fewer follow-on errors.
|
||||
continue
|
||||
}
|
||||
if targ := arg.typ; isTyped(targ) {
|
||||
// If we permit bidirectional unification, and targ is
|
||||
// a generic function, we need to initialize u.y with
|
||||
// the respective type parameters of targ.
|
||||
if !u.unify(par.typ, targ) {
|
||||
errorf("type", par.typ, targ, arg)
|
||||
return nil
|
||||
}
|
||||
} else if _, ok := par.typ.(*TypeParam); ok {
|
||||
// Since default types are all basic (i.e., non-composite) types, an
|
||||
// untyped argument will never match a composite parameter type; the
|
||||
// only parameter type it can possibly match against is a *TypeParam.
|
||||
// Thus, for untyped arguments we only need to look at parameter types
|
||||
// that are single type parameters.
|
||||
indices = append(indices, i)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// If we've got all type arguments, we're done.
|
||||
targs = u.inferred(tparams)
|
||||
if u.unknowns() == 0 {
|
||||
return targs
|
||||
}
|
||||
|
||||
// --- 2 ---
|
||||
// See how far we get with constraint type inference.
|
||||
// Note that even if we don't have any type arguments, constraint type inference
|
||||
// may produce results for constraints that explicitly specify a type.
|
||||
targs, index := check.inferB(tparams, targs)
|
||||
if targs == nil || index < 0 {
|
||||
return targs
|
||||
}
|
||||
|
||||
// --- 3 ---
|
||||
// Use any untyped arguments to infer additional type arguments.
|
||||
// Some generic parameters with untyped arguments may have been given
|
||||
// a type by now, we can ignore them.
|
||||
for _, i := range indices {
|
||||
tpar := params.At(i).typ.(*TypeParam) // is type parameter by construction of indices
|
||||
// Only consider untyped arguments for which the corresponding type
|
||||
// parameter doesn't have an inferred type yet.
|
||||
if targs[tpar.index] == nil {
|
||||
arg := args[i]
|
||||
targ := Default(arg.typ)
|
||||
// The default type for an untyped nil is untyped nil. We must not
|
||||
// infer an untyped nil type as type parameter type. Ignore untyped
|
||||
// nil by making sure all default argument types are typed.
|
||||
if isTyped(targ) && !u.unify(tpar, targ) {
|
||||
errorf("default type", tpar, targ, arg)
|
||||
return nil
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// If we've got all type arguments, we're done.
|
||||
targs = u.inferred(tparams)
|
||||
if u.unknowns() == 0 {
|
||||
return targs
|
||||
}
|
||||
|
||||
// --- 4 ---
|
||||
// Again, follow up with constraint type inference.
|
||||
targs, index = check.inferB(tparams, targs)
|
||||
if targs == nil || index < 0 {
|
||||
return targs
|
||||
}
|
||||
|
||||
// At least one type argument couldn't be inferred.
|
||||
assert(targs != nil && index >= 0 && targs[index] == nil)
|
||||
tpar := tparams[index]
|
||||
if !silent {
|
||||
check.errorf(posn, CannotInferTypeArgs, "cannot infer %s (%s)", tpar.obj.name, tpar.obj.pos)
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
// renameTParams renames the type parameters in a function signature described by its
|
||||
// type and ordinary parameters (tparams and params) such that each type parameter is
|
||||
// given a new identity. renameTParams returns the new type and ordinary parameters.
|
||||
|
|
@ -390,203 +189,6 @@ func (w *tpWalker) isParameterizedTypeList(list []Type) bool {
|
|||
return false
|
||||
}
|
||||
|
||||
// inferB returns the list of actual type arguments inferred from the type parameters'
|
||||
// bounds and an initial set of type arguments. If type inference is impossible because
|
||||
// unification fails, an error is reported if report is set to true, the resulting types
|
||||
// list is nil, and index is 0.
|
||||
// Otherwise, types is the list of inferred type arguments, and index is the index of the
|
||||
// first type argument in that list that couldn't be inferred (and thus is nil). If all
|
||||
// type arguments were inferred successfully, index is < 0. The number of type arguments
|
||||
// provided may be less than the number of type parameters, but there must be at least one.
|
||||
func (check *Checker) inferB(tparams []*TypeParam, targs []Type) (types []Type, index int) {
|
||||
assert(len(tparams) >= len(targs) && len(targs) > 0)
|
||||
|
||||
if traceInference {
|
||||
check.dump("-- inferB %s ➞ %s", tparams, targs)
|
||||
defer func() {
|
||||
check.dump("=> inferB %s ➞ %s", tparams, types)
|
||||
}()
|
||||
}
|
||||
|
||||
// Unify type parameters with their constraints.
|
||||
u := newUnifier(tparams, targs)
|
||||
|
||||
// Repeatedly apply constraint type inference as long as
|
||||
// there are still unknown type arguments and progress is
|
||||
// being made.
|
||||
//
|
||||
// This is an O(n^2) algorithm where n is the number of
|
||||
// type parameters: if there is progress (and iteration
|
||||
// continues), at least one type argument is inferred
|
||||
// per iteration and we have a doubly nested loop.
|
||||
// In practice this is not a problem because the number
|
||||
// of type parameters tends to be very small (< 5 or so).
|
||||
// (It should be possible for unification to efficiently
|
||||
// signal newly inferred type arguments; then the loops
|
||||
// here could handle the respective type parameters only,
|
||||
// but that will come at a cost of extra complexity which
|
||||
// may not be worth it.)
|
||||
for n := u.unknowns(); n > 0; {
|
||||
nn := n
|
||||
|
||||
for _, tpar := range tparams {
|
||||
// If there is a core term (i.e., a core type with tilde information)
|
||||
// unify the type parameter with the core type.
|
||||
if core, single := coreTerm(tpar); core != nil {
|
||||
if traceInference {
|
||||
u.tracef("core(%s) = %s (single = %v)", tpar, core, single)
|
||||
}
|
||||
// A type parameter can be unified with its core type in two cases.
|
||||
tx := u.at(tpar)
|
||||
switch {
|
||||
case tx != nil:
|
||||
// The corresponding type argument tx is known.
|
||||
// In this case, if the core type has a tilde, the type argument's underlying
|
||||
// type must match the core type, otherwise the type argument and the core type
|
||||
// must match.
|
||||
// If tx is an external type parameter, don't consider its underlying type
|
||||
// (which is an interface). Core type unification will attempt to unify against
|
||||
// core.typ.
|
||||
// Note also that even with inexact unification we cannot leave away the under
|
||||
// call here because it's possible that both tx and core.typ are named types,
|
||||
// with under(tx) being a (named) basic type matching core.typ. Such cases do
|
||||
// not match with inexact unification.
|
||||
if core.tilde && !isTypeParam(tx) {
|
||||
tx = under(tx)
|
||||
}
|
||||
// Unification may fail because it operates with limited information (core type),
|
||||
// even if a given type argument satisfies the corresponding type constraint.
|
||||
// For instance, given [P T1|T2, ...] where the type argument for P is (named
|
||||
// type) T1, and T1 and T2 have the same built-in (named) type T0 as underlying
|
||||
// type, the core type will be the named type T0, which doesn't match T1.
|
||||
// Yet the instantiation of P with T1 is clearly valid (see go.dev/issue/53650).
|
||||
// Reporting an error if unification fails would be incorrect in this case.
|
||||
// On the other hand, it is safe to ignore failing unification during constraint
|
||||
// type inference because if the failure is true, an error will be reported when
|
||||
// checking instantiation.
|
||||
u.unify(tx, core.typ)
|
||||
|
||||
case single && !core.tilde:
|
||||
// The corresponding type argument tx is unknown and there's a single
|
||||
// specific type and no tilde.
|
||||
// In this case the type argument must be that single type; set it.
|
||||
u.set(tpar, core.typ)
|
||||
|
||||
default:
|
||||
// Unification is not possible and no progress was made.
|
||||
continue
|
||||
}
|
||||
|
||||
// The number of known type arguments may have changed.
|
||||
nn = u.unknowns()
|
||||
if nn == 0 {
|
||||
break // all type arguments are known
|
||||
}
|
||||
} else {
|
||||
if traceInference {
|
||||
u.tracef("core(%s) = nil", tpar)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
assert(nn <= n)
|
||||
if nn == n {
|
||||
break // no progress
|
||||
}
|
||||
n = nn
|
||||
}
|
||||
|
||||
// u.inferred(tparams) now contains the incoming type arguments plus any additional type
|
||||
// arguments which were inferred from core terms. The newly inferred non-nil
|
||||
// entries may still contain references to other type parameters.
|
||||
// For instance, for [A any, B interface{ []C }, C interface{ *A }], if A == int
|
||||
// was given, unification produced the type list [int, []C, *A]. We eliminate the
|
||||
// remaining type parameters by substituting the type parameters in this type list
|
||||
// until nothing changes anymore.
|
||||
types = u.inferred(tparams)
|
||||
if debug {
|
||||
for i, targ := range targs {
|
||||
assert(targ == nil || types[i] == targ)
|
||||
}
|
||||
}
|
||||
|
||||
// The data structure of each (provided or inferred) type represents a graph, where
|
||||
// each node corresponds to a type and each (directed) vertex points to a component
|
||||
// type. The substitution process described above repeatedly replaces type parameter
|
||||
// nodes in these graphs with the graphs of the types the type parameters stand for,
|
||||
// which creates a new (possibly bigger) graph for each type.
|
||||
// The substitution process will not stop if the replacement graph for a type parameter
|
||||
// also contains that type parameter.
|
||||
// For instance, for [A interface{ *A }], without any type argument provided for A,
|
||||
// unification produces the type list [*A]. Substituting A in *A with the value for
|
||||
// A will lead to infinite expansion by producing [**A], [****A], [********A], etc.,
|
||||
// because the graph A -> *A has a cycle through A.
|
||||
// Generally, cycles may occur across multiple type parameters and inferred types
|
||||
// (for instance, consider [P interface{ *Q }, Q interface{ func(P) }]).
|
||||
// We eliminate cycles by walking the graphs for all type parameters. If a cycle
|
||||
// through a type parameter is detected, cycleFinder nils out the respective type
|
||||
// which kills the cycle; this also means that the respective type could not be
|
||||
// inferred.
|
||||
//
|
||||
// TODO(gri) If useful, we could report the respective cycle as an error. We don't
|
||||
// do this now because type inference will fail anyway, and furthermore,
|
||||
// constraints with cycles of this kind cannot currently be satisfied by
|
||||
// any user-supplied type. But should that change, reporting an error
|
||||
// would be wrong.
|
||||
w := cycleFinder{tparams, types, make(map[Type]bool)}
|
||||
for _, t := range tparams {
|
||||
w.typ(t) // t != nil
|
||||
}
|
||||
|
||||
// dirty tracks the indices of all types that may still contain type parameters.
|
||||
// We know that nil type entries and entries corresponding to provided (non-nil)
|
||||
// type arguments are clean, so exclude them from the start.
|
||||
var dirty []int
|
||||
for i, typ := range types {
|
||||
if typ != nil && (i >= len(targs) || targs[i] == nil) {
|
||||
dirty = append(dirty, i)
|
||||
}
|
||||
}
|
||||
|
||||
for len(dirty) > 0 {
|
||||
// TODO(gri) Instead of creating a new substMap for each iteration,
|
||||
// provide an update operation for substMaps and only change when
|
||||
// needed. Optimization.
|
||||
smap := makeSubstMap(tparams, types)
|
||||
n := 0
|
||||
for _, index := range dirty {
|
||||
t0 := types[index]
|
||||
if t1 := check.subst(nopos, t0, smap, nil, check.context()); t1 != t0 {
|
||||
types[index] = t1
|
||||
dirty[n] = index
|
||||
n++
|
||||
}
|
||||
}
|
||||
dirty = dirty[:n]
|
||||
}
|
||||
|
||||
// Once nothing changes anymore, we may still have type parameters left;
|
||||
// e.g., a constraint with core type *P may match a type parameter Q but
|
||||
// we don't have any type arguments to fill in for *P or Q (go.dev/issue/45548).
|
||||
// Don't let such inferences escape, instead nil them out.
|
||||
for i, typ := range types {
|
||||
if typ != nil && isParameterized(tparams, typ) {
|
||||
types[i] = nil
|
||||
}
|
||||
}
|
||||
|
||||
// update index
|
||||
index = -1
|
||||
for i, typ := range types {
|
||||
if typ == nil {
|
||||
index = i
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
// If the type parameter has a single specific type S, coreTerm returns (S, true).
|
||||
// Otherwise, if tpar has a core type T, it returns a term corresponding to that
|
||||
// core type and false. In that case, if any term of tpar has a tilde, the core
|
||||
|
|
|
|||
|
|
@ -13,39 +13,13 @@ import (
|
|||
. "internal/types/errors"
|
||||
)
|
||||
|
||||
// If compareWithInfer1, infer2 results must match infer1 results.
|
||||
// Disable before releasing Go 1.21.
|
||||
const compareWithInfer1 = false
|
||||
|
||||
// infer attempts to infer the complete set of type arguments for generic function instantiation/call
|
||||
// based on the given type parameters tparams, type arguments targs, function parameters params, and
|
||||
// function arguments args, if any. There must be at least one type parameter, no more type arguments
|
||||
// than type parameters, and params and args must match in number (incl. zero).
|
||||
// If successful, infer returns the complete list of given and inferred type arguments, one for each
|
||||
// type parameter. Otherwise the result is nil and appropriate errors will be reported.
|
||||
func (check *Checker) infer(posn positioner, tparams []*TypeParam, targs []Type, params *Tuple, args []*operand) []Type {
|
||||
r2 := check.infer2(posn, tparams, targs, params, args)
|
||||
|
||||
if compareWithInfer1 {
|
||||
r1 := check.infer1(posn, tparams, targs, params, args, r2 == nil) // be silent on errors if infer2 failed
|
||||
assert(len(r2) == len(r1))
|
||||
for i, targ2 := range r2 {
|
||||
targ1 := r1[i]
|
||||
var c comparer
|
||||
c.ignoreInvalids = true
|
||||
if !c.identical(targ2, targ1, nil) {
|
||||
tpar := tparams[i]
|
||||
check.dump("%v: type argument for %s: infer1: %s, infer2: %s", tpar.Obj().Pos(), tpar, targ1, targ2)
|
||||
panic("inconsistent type inference")
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return r2
|
||||
}
|
||||
|
||||
// infer2 is an implementation of infer.
|
||||
func (check *Checker) infer2(posn positioner, tparams []*TypeParam, targs []Type, params *Tuple, args []*operand) (inferred []Type) {
|
||||
func (check *Checker) infer(posn positioner, tparams []*TypeParam, targs []Type, params *Tuple, args []*operand) (inferred []Type) {
|
||||
if debug {
|
||||
defer func() {
|
||||
assert(inferred == nil || len(inferred) == len(tparams))
|
||||
|
|
@ -56,7 +30,7 @@ func (check *Checker) infer2(posn positioner, tparams []*TypeParam, targs []Type
|
|||
}
|
||||
|
||||
if traceInference {
|
||||
check.dump("-- infer2 %s%s ➞ %s", tparams, params, targs)
|
||||
check.dump("-- infer %s%s ➞ %s", tparams, params, targs)
|
||||
defer func() {
|
||||
check.dump("=> %s ➞ %s\n", tparams, inferred)
|
||||
}()
|
||||
|
|
|
|||
Loading…
Reference in New Issue