runtime: move per-P timers state into its own struct

Continuing conversion from C to Go, introduce type timers
encapsulating all timer heap state, with methods for operations.
This should at least be easier to think about, instead of having
these fields strewn through the P struct. It should also be easier
to test.

I am skeptical about the pair of atomic int64 deadlines:
I think there are missed wakeups lurking.
Having the code in an abstracted API should make it easier
to reason through and fix if needed.

[This is one CL in a refactoring stack making very small changes
in each step, so that any subtle bugs that we miss can be more
easily pinpointed to a small change.]

Change-Id: If5ea3e0b946ca14076f44c85cbb4feb9eddb4f95
Reviewed-on: https://go-review.googlesource.com/c/go/+/564132
Reviewed-by: Austin Clements <austin@google.com>
LUCI-TryBot-Result: Go LUCI <golang-scoped@luci-project-accounts.iam.gserviceaccount.com>
Auto-Submit: Russ Cox <rsc@golang.org>
This commit is contained in:
Russ Cox 2024-02-14 11:57:05 -05:00 committed by Gopher Robot
parent 8570aaaf1a
commit adc575e64c
4 changed files with 244 additions and 234 deletions

View File

@ -2961,7 +2961,7 @@ func handoffp(pp *p) {
// The scheduler lock cannot be held when calling wakeNetPoller below
// because wakeNetPoller may call wakep which may call startm.
when := nobarrierWakeTime(pp)
when := pp.timers.wakeTime()
pidleput(pp, 0)
unlock(&sched.lock)
@ -3158,7 +3158,7 @@ top:
// which may steal timers. It's important that between now
// and then, nothing blocks, so these numbers remain mostly
// relevant.
now, pollUntil, _ := checkTimers(pp, 0)
now, pollUntil, _ := pp.timers.check(0)
// Try to schedule the trace reader.
if traceEnabled() || traceShuttingDown() {
@ -3575,7 +3575,7 @@ func stealWork(now int64) (gp *g, inheritTime bool, rnow, pollUntil int64, newWo
// timerpMask tells us whether the P may have timers at all. If it
// can't, no need to check at all.
if stealTimersOrRunNextG && timerpMask.read(enum.position()) {
tnow, w, ran := checkTimers(p2, now)
tnow, w, ran := p2.timers.check(now)
now = tnow
if w != 0 && (pollUntil == 0 || w < pollUntil) {
pollUntil = w
@ -3641,7 +3641,7 @@ func checkRunqsNoP(allpSnapshot []*p, idlepMaskSnapshot pMask) *p {
func checkTimersNoP(allpSnapshot []*p, timerpMaskSnapshot pMask, pollUntil int64) int64 {
for id, p2 := range allpSnapshot {
if timerpMaskSnapshot.read(uint32(id)) {
w := nobarrierWakeTime(p2)
w := p2.timers.wakeTime()
if w != 0 && (pollUntil == 0 || w < pollUntil) {
pollUntil = w
}
@ -5435,7 +5435,7 @@ func (pp *p) init(id int32) {
pp.raceprocctx = raceproccreate()
}
}
lockInit(&pp.timersLock, lockRankTimers)
lockInit(&pp.timers.lock, lockRankTimers)
// This P may get timers when it starts running. Set the mask here
// since the P may not go through pidleget (notably P 0 on startup).
@ -5467,7 +5467,7 @@ func (pp *p) destroy() {
}
// Move all timers to the local P.
adoptTimers(pp)
getg().m.p.ptr().timers.take(&pp.timers)
// Flush p's write barrier buffer.
if gcphase != _GCoff {
@ -5498,7 +5498,7 @@ func (pp *p) destroy() {
gfpurge(pp)
traceProcFree(pp)
if raceenabled {
if pp.timerRaceCtx != 0 {
if pp.timers.raceCtx != 0 {
// The race detector code uses a callback to fetch
// the proc context, so arrange for that callback
// to see the right thing.
@ -5508,8 +5508,8 @@ func (pp *p) destroy() {
phold := mp.p.ptr()
mp.p.set(pp)
racectxend(pp.timerRaceCtx)
pp.timerRaceCtx = 0
racectxend(pp.timers.raceCtx)
pp.timers.raceCtx = 0
mp.p.set(phold)
}
@ -5860,7 +5860,7 @@ func checkdead() {
// There are no goroutines running, so we can look at the P's.
for _, pp := range allp {
if len(pp.timers) > 0 {
if len(pp.timers.heap) > 0 {
return
}
}
@ -6204,7 +6204,7 @@ func schedtrace(detailed bool) {
} else {
print("nil")
}
print(" runqsize=", t-h, " gfreecnt=", pp.gFree.n, " timerslen=", len(pp.timers), "\n")
print(" runqsize=", t-h, " gfreecnt=", pp.gFree.n, " timerslen=", len(pp.timers.heap), "\n")
} else {
// In non-detailed mode format lengths of per-P run queues as:
// [len1 len2 len3 len4]

View File

@ -708,16 +708,6 @@ type p struct {
palloc persistentAlloc // per-P to avoid mutex
// The when field of the first entry on the timer heap.
// This is 0 if the timer heap is empty.
timer0When atomic.Int64
// The earliest known nextwhen field of a timer with
// timerModifiedEarlier status. Because the timer may have been
// modified again, there need not be any timer with this value.
// This is 0 if there are no timerModifiedEarlier timers.
timerModifiedEarliest atomic.Int64
// Per-P GC state
gcAssistTime int64 // Nanoseconds in assistAlloc
gcFractionalMarkTime int64 // Nanoseconds in fractional mark worker (atomic)
@ -751,23 +741,8 @@ type p struct {
// writing any stats. Its value is even when not, odd when it is.
statsSeq atomic.Uint32
// Lock for timers. We normally access the timers while running
// on this P, but the scheduler can also do it from a different P.
timersLock mutex
// Actions to take at some time. This is used to implement the
// standard library's time package.
// Must hold timersLock to access.
timers []*timer
// Number of timers in P's heap.
numTimers atomic.Uint32
// Number of timerDeleted timers in P's heap.
deletedTimers atomic.Uint32
// Race context used while executing timer functions.
timerRaceCtx uintptr
// Timer heap.
timers timers
// maxStackScanDelta accumulates the amount of stack space held by
// live goroutines (i.e. those eligible for stack scanning).

View File

@ -28,10 +28,7 @@ import (
// Package time knows the layout of this structure.
// If this struct changes, adjust ../time/sleep.go:/runtimeTimer.
type timer struct {
// If this timer is on a heap, which P's heap it is on.
// puintptr rather than *p to match uintptr in the versions
// of this struct defined in other packages.
pp puintptr
ts *timers
// Timer wakes up at when, and then at when+period, ... (period > 0 only)
// each time calling f(arg, now) in the timer goroutine, so f must be
@ -55,6 +52,39 @@ type timer struct {
state atomic.Uint32
}
// A timers is a per-P set of timers.
type timers struct {
// lock protects timers; timers are per-P, but the scheduler can
// access the timers of another P, so we have to lock.
lock mutex
// heap is the set of timers, ordered by t.when.
// Must hold lock to access.
heap []*timer
// len is an atomic copy of len(heap).
len atomic.Uint32
// zombies is the number of deleted timers left in heap.
zombies atomic.Uint32
// raceCtx is the race context used while executing timer functions.
raceCtx uintptr
// timer0When is an atomic copy of of heap[0].when.
// If len(heap) == 0, timer0When is 0.
timer0When atomic.Int64
// timerModifiedEarliest holds the earliest known heap[i].nextWhen field
// for the heap entries with a new nextWhen pending
// (that is, with the timerNextWhen bit set in t.state).
// Because timers can be modified multiple times,
// timerModifiedEarliest can be set to a nextWhen that has since
// been replaced with a later time.
// If this is 0, it means there are no timerNextWhen timers in the heap.
timerModifiedEarliest atomic.Int64
}
// Timer state field.
// Note that state 0 must be "unlocked, not in heap" and usable,
// at least for time.Timer.Stop. See go.dev/issue/21874.
@ -117,33 +147,33 @@ func (t *timer) unlock(state uint32, mp *m) {
// updateWhen updates t.when as directed by state, returning the new state
// and a bool indicating whether the state (and t.when) changed.
// If pp != nil, then the caller must have locked pp.timers,
// t must be pp.timers[0], and updateWhen takes care of
// moving t within the pp.timers heap when t.when is changed.
func (t *timer) updateWhen(state uint32, pp *p) (newState uint32, updated bool) {
// If ts != nil, then the caller must have locked ts,
// t must be ts.heap[0], and updateWhen takes care of
// moving t within the timers heap when t.when is changed.
func (t *timer) updateWhen(state uint32, ts *timers) (newState uint32, updated bool) {
if state&timerNextWhen == 0 {
return state, false
}
state &^= timerNextWhen
if t.nextWhen == 0 {
if pp != nil {
if t != pp.timers[0] {
if ts != nil {
if t != ts.heap[0] {
badTimer()
}
pp.deletedTimers.Add(-1)
dodeltimer0(pp)
ts.zombies.Add(-1)
ts.deleteMin()
}
state &^= timerHeaped
} else {
// Now we can change the when field.
t.when = t.nextWhen
// Move t to the right position.
if pp != nil {
if t != pp.timers[0] {
if ts != nil {
if t != ts.heap[0] {
badTimer()
}
siftdownTimer(pp.timers, 0)
updateTimer0When(pp)
ts.siftDown(0)
ts.updateTimer0When()
}
}
return state, true
@ -241,26 +271,26 @@ func goroutineReady(arg any, seq uintptr) {
goready(arg.(*g), 0)
}
// doaddtimer adds t to the current P's heap.
// The caller must have set t.pp = pp, unlocked t,
// and then locked the timers for pp.
func doaddtimer(pp *p, t *timer) {
// add adds t to the timers.
// The caller must have set t.ts = t, unlocked t,
// and then locked ts.lock.
func (ts *timers) add(t *timer) {
assertLockHeld(&ts.lock)
// Timers rely on the network poller, so make sure the poller
// has started.
if netpollInited.Load() == 0 {
netpollGenericInit()
}
if t.pp.ptr() != pp {
throw("doaddtimer: P not set in timer")
if t.ts != ts {
throw("ts not set in timer")
}
i := len(pp.timers)
pp.timers = append(pp.timers, t)
siftupTimer(pp.timers, i)
if t == pp.timers[0] {
pp.timer0When.Store(t.when)
ts.heap = append(ts.heap, t)
ts.siftUp(len(ts.heap) - 1)
if t == ts.heap[0] {
ts.timer0When.Store(t.when)
}
pp.numTimers.Add(1)
ts.len.Add(1)
}
// stop deletes the timer t. It may be on some other P, so we can't
@ -271,7 +301,7 @@ func (t *timer) stop() bool {
state, mp := t.lock()
if state&timerHeaped != 0 && (state&timerNextWhen == 0 || t.nextWhen != 0) {
// Timer pending: stop it.
t.pp.ptr().deletedTimers.Add(1)
t.ts.zombies.Add(1)
t.nextWhen = 0
state |= timerNextWhen
t.unlock(state, mp)
@ -283,30 +313,29 @@ func (t *timer) stop() bool {
return false
}
// dodeltimer0 removes timer 0 from the current P's heap.
// We are locked on the P when this is called.
// It reports whether it saw no problems due to races.
// The caller must have locked the timers for pp.
func dodeltimer0(pp *p) {
if t := pp.timers[0]; t.pp.ptr() != pp {
throw("dodeltimer0: wrong P")
} else {
t.pp = 0
// deleteMin removes timer 0 from ts.
// ts must be locked.
func (ts *timers) deleteMin() {
assertLockHeld(&ts.lock)
t := ts.heap[0]
if t.ts != ts {
throw("wrong timers")
}
last := len(pp.timers) - 1
t.ts = nil
last := len(ts.heap) - 1
if last > 0 {
pp.timers[0] = pp.timers[last]
ts.heap[0] = ts.heap[last]
}
pp.timers[last] = nil
pp.timers = pp.timers[:last]
ts.heap[last] = nil
ts.heap = ts.heap[:last]
if last > 0 {
siftdownTimer(pp.timers, 0)
ts.siftDown(0)
}
updateTimer0When(pp)
n := pp.numTimers.Add(-1)
ts.updateTimer0When()
n := ts.len.Add(-1)
if n == 0 {
// If there are no timers, then clearly none are modified.
pp.timerModifiedEarliest.Store(0)
ts.timerModifiedEarliest.Store(0)
}
}
@ -331,28 +360,29 @@ func (t *timer) modify(when, period int64, f func(any, uintptr), arg any, seq ui
// Set up t for insertion but unlock first,
// to avoid lock inversion with timers lock.
// Since t is not in a heap yet, nothing will
// find and modify it until after the doaddtimer.
// find and modify it until after the ts.add.
state |= timerHeaped
t.when = when
pp := getg().m.p.ptr()
t.pp.set(pp)
ts := &getg().m.p.ptr().timers
t.ts = ts
// pass mp=nil to t.unlock to avoid preemption
// between t.unlock and lock of timersLock.
// releasem done manually below
t.unlock(state, nil)
lock(&pp.timersLock)
doaddtimer(pp, t)
unlock(&pp.timersLock)
lock(&ts.lock)
ts.add(t)
unlock(&ts.lock)
releasem(mp)
wakeNetPoller(when)
return false
}
pending := state&timerNextWhen == 0 || t.nextWhen != 0 // timerHeaped is set (checked above)
if !pending {
t.pp.ptr().deletedTimers.Add(-1)
t.ts.zombies.Add(-1)
}
// The timer is in some other P's heap, so we can't change
@ -364,7 +394,7 @@ func (t *timer) modify(when, period int64, f func(any, uintptr), arg any, seq ui
state |= timerNextWhen
earlier := when < t.when
if earlier {
updateTimerModifiedEarliest(t.pp.ptr(), when)
t.ts.updateTimerModifiedEarliest(when)
}
t.unlock(state, mp)
@ -384,14 +414,15 @@ func (t *timer) reset(when int64) bool {
return t.modify(when, t.period, t.f, t.arg, t.seq)
}
// cleantimers cleans up the head of the timer queue. This speeds up
// cleanHead cleans up the head of the timer queue. This speeds up
// programs that create and delete timers; leaving them in the heap
// slows down heap operations.
// The caller must have locked the timers for pp.
func cleantimers(pp *p) {
// The caller must have locked ts.
func (ts *timers) cleanHead() {
assertLockHeld(&ts.lock)
gp := getg()
for {
if len(pp.timers) == 0 {
if len(ts.heap) == 0 {
return
}
@ -403,9 +434,9 @@ func cleantimers(pp *p) {
return
}
t := pp.timers[0]
if t.pp.ptr() != pp {
throw("cleantimers: bad p")
t := ts.heap[0]
if t.ts != ts {
throw("bad ts")
}
if t.state.Load()&timerNextWhen == 0 {
@ -414,7 +445,7 @@ func cleantimers(pp *p) {
}
state, mp := t.lock()
state, updated := t.updateWhen(state, pp)
state, updated := t.updateWhen(state, ts)
t.unlock(state, mp)
if !updated {
// Head of timers does not need adjustment.
@ -424,78 +455,83 @@ func cleantimers(pp *p) {
}
}
// adoptTimers adopts any timers from pp into the local P,
// because pp is being destroyed.
func adoptTimers(pp *p) {
if len(pp.timers) > 0 {
plocal := getg().m.p.ptr()
// take moves any timers from src into ts
// and then clears the timer state from src,
// because src is being destroyed.
// The caller must not have locked either timers.
// For now this is only called when the world is stopped.
func (ts *timers) take(src *timers) {
assertWorldStopped()
if len(src.heap) > 0 {
// The world is stopped, but we acquire timersLock to
// protect against sysmon calling timeSleepUntil.
// This is the only case where we hold the timersLock of
// more than one P, so there are no deadlock concerns.
lock(&plocal.timersLock)
lock(&pp.timersLock)
moveTimers(plocal, pp.timers)
pp.timers = nil
pp.numTimers.Store(0)
pp.deletedTimers.Store(0)
pp.timer0When.Store(0)
unlock(&pp.timersLock)
unlock(&plocal.timersLock)
// This is the only case where we hold more than one ts.lock,
// so there are no deadlock concerns.
lock(&src.lock)
lock(&ts.lock)
ts.move(src.heap)
src.heap = nil
src.len.Store(0)
src.zombies.Store(0)
src.timer0When.Store(0)
unlock(&ts.lock)
unlock(&src.lock)
}
}
// moveTimers moves a slice of timers to pp. The slice has been taken
// from a different P.
// This is currently called when the world is stopped, but the caller
// is expected to have locked the timers for pp.
func moveTimers(pp *p, timers []*timer) {
// is expected to have locked ts.
func (ts *timers) move(timers []*timer) {
assertLockHeld(&ts.lock)
for _, t := range timers {
state, mp := t.lock()
t.pp = 0
t.ts = nil
state, _ = t.updateWhen(state, nil)
// Unlock before add, to avoid append (allocation)
// while holding lock. This would be correct even if the world wasn't
// stopped (but it is), and it makes staticlockranking happy.
if state&timerHeaped != 0 {
t.pp.set(pp)
t.ts = ts
}
t.unlock(state, mp)
if state&timerHeaped != 0 {
doaddtimer(pp, t)
ts.add(t)
}
}
}
// adjusttimers looks through the timers in the current P's heap for
// adjust looks through the timers in ts.heap for
// any timers that have been modified to run earlier, and puts them in
// the correct place in the heap. While looking for those timers,
// it also moves timers that have been modified to run later,
// and removes deleted timers. The caller must have locked the timers for pp.
func adjusttimers(pp *p, now int64, force bool) {
// and removes deleted timers. The caller must have locked ts.
func (ts *timers) adjust(now int64, force bool) {
assertLockHeld(&ts.lock)
// If we haven't yet reached the time of the earliest timerModified
// timer, don't do anything. This speeds up programs that adjust
// a lot of timers back and forth if the timers rarely expire.
// We'll postpone looking through all the adjusted timers until
// one would actually expire.
if !force {
first := pp.timerModifiedEarliest.Load()
first := ts.timerModifiedEarliest.Load()
if first == 0 || first > now {
if verifyTimers {
verifyTimerHeap(pp)
ts.verify()
}
return
}
}
// We are going to clear all timerModified timers.
pp.timerModifiedEarliest.Store(0)
ts.timerModifiedEarliest.Store(0)
changed := false
for i := 0; i < len(pp.timers); i++ {
t := pp.timers[i]
if t.pp.ptr() != pp {
throw("adjusttimers: bad p")
for i := 0; i < len(ts.heap); i++ {
t := ts.heap[i]
if t.ts != ts {
throw("bad ts")
}
state, mp := t.lock()
@ -506,12 +542,12 @@ func adjusttimers(pp *p, now int64, force bool) {
if updated {
changed = true
if state&timerHeaped == 0 {
n := len(pp.timers)
pp.timers[i] = pp.timers[n-1]
pp.timers[n-1] = nil
pp.timers = pp.timers[:n-1]
t.pp = 0
pp.deletedTimers.Add(-1)
n := len(ts.heap)
ts.heap[i] = ts.heap[n-1]
ts.heap[n-1] = nil
ts.heap = ts.heap[:n-1]
t.ts = nil
ts.zombies.Add(-1)
i--
}
}
@ -519,31 +555,31 @@ func adjusttimers(pp *p, now int64, force bool) {
}
if changed {
initTimerHeap(pp.timers)
updateTimer0When(pp)
ts.initHeap()
ts.updateTimer0When()
}
if verifyTimers {
verifyTimerHeap(pp)
ts.verify()
}
}
// nobarrierWakeTime looks at P's timers and returns the time when we
// wakeTime looks at ts's timers and returns the time when we
// should wake up the netpoller. It returns 0 if there are no timers.
// This function is invoked when dropping a P, and must run without
// This function is invoked when dropping a P, so it must run without
// any write barriers.
//
//go:nowritebarrierrec
func nobarrierWakeTime(pp *p) int64 {
next := pp.timer0When.Load()
nextAdj := pp.timerModifiedEarliest.Load()
func (ts *timers) wakeTime() int64 {
next := ts.timer0When.Load()
nextAdj := ts.timerModifiedEarliest.Load()
if next == 0 || (nextAdj != 0 && nextAdj < next) {
next = nextAdj
}
return next
}
// checkTimers runs any timers for the P that are ready.
// check runs any timers in ts that are ready.
// If now is not 0 it is the current time.
// It returns the passed time or the current time if now was passed as 0.
// and the time when the next timer should run or 0 if there is no next timer,
@ -553,11 +589,11 @@ func nobarrierWakeTime(pp *p) int64 {
// We pass now in and out to avoid extra calls of nanotime.
//
//go:yeswritebarrierrec
func checkTimers(pp *p, now int64) (rnow, pollUntil int64, ran bool) {
func (ts *timers) check(now int64) (rnow, pollUntil int64, ran bool) {
// If it's not yet time for the first timer, or the first adjusted
// timer, then there is nothing to do.
next := pp.timer0When.Load()
nextAdj := pp.timerModifiedEarliest.Load()
next := ts.timer0When.Load()
nextAdj := ts.timerModifiedEarliest.Load()
if next == 0 || (nextAdj != 0 && nextAdj < next) {
next = nextAdj
}
@ -570,28 +606,23 @@ func checkTimers(pp *p, now int64) (rnow, pollUntil int64, ran bool) {
if now == 0 {
now = nanotime()
}
if now < next {
// Next timer is not ready to run, but keep going
// if we would clear deleted timers.
// This corresponds to the condition below where
// we decide whether to call clearDeletedTimers.
if pp != getg().m.p.ptr() || int(pp.deletedTimers.Load()) <= int(pp.numTimers.Load()/4) {
return now, next, false
}
// If this is the local P, and there are a lot of deleted timers,
// clear them out. We only do this for the local P to reduce
// lock contention on timersLock.
force := ts == &getg().m.p.ptr().timers && int(ts.zombies.Load()) > int(ts.len.Load())/4
if now < next && !force {
// Next timer is not ready to run, and we don't need to clear deleted timers.
return now, next, false
}
lock(&pp.timersLock)
if len(pp.timers) > 0 {
// If this is the local P, and there are a lot of deleted timers,
// clear them out. We only do this for the local P to reduce
// lock contention on timersLock.
force := pp == getg().m.p.ptr() && int(pp.deletedTimers.Load()) > len(pp.timers)/4
adjusttimers(pp, now, force)
for len(pp.timers) > 0 {
// Note that runtimer may temporarily unlock
// pp.timersLock.
if tw := runtimer(pp, now); tw != 0 {
lock(&ts.lock)
if len(ts.heap) > 0 {
ts.adjust(now, force)
for len(ts.heap) > 0 {
// Note that runtimer may temporarily unlock ts.
if tw := ts.run(now); tw != 0 {
if tw > 0 {
pollUntil = tw
}
@ -601,38 +632,39 @@ func checkTimers(pp *p, now int64) (rnow, pollUntil int64, ran bool) {
}
}
unlock(&pp.timersLock)
unlock(&ts.lock)
return now, pollUntil, ran
}
// runtimer examines the first timer in timers. If it is ready based on now,
// run examines the first timer in ts. If it is ready based on now,
// it runs the timer and removes or updates it.
// Returns 0 if it ran a timer, -1 if there are no more timers, or the time
// when the first timer should run.
// The caller must have locked the timers for pp.
// If a timer is run, this will temporarily unlock the timers.
// The caller must have locked ts.
// If a timer is run, this will temporarily unlock ts.
//
//go:systemstack
func runtimer(pp *p, now int64) int64 {
func (ts *timers) run(now int64) int64 {
assertLockHeld(&ts.lock)
Redo:
if len(pp.timers) == 0 {
if len(ts.heap) == 0 {
return -1
}
t := pp.timers[0]
if t.pp.ptr() != pp {
throw("runtimer: bad p")
t := ts.heap[0]
if t.ts != ts {
throw("bad ts")
}
if t.state.Load()&timerNextWhen == 0 && t.when > now {
// Fast path: not ready to run.
// The access of t.when is protected by the caller holding
// pp.timersLock, even though t itself is unlocked.
// ts.lock, even though t itself is unlocked.
return t.when
}
state, mp := t.lock()
state, updated := t.updateWhen(state, pp)
state, updated := t.updateWhen(state, ts)
if updated {
t.unlock(state, mp)
goto Redo
@ -648,22 +680,24 @@ Redo:
return t.when
}
unlockAndRunTimer(pp, t, now, state, mp)
ts.unlockAndRun(t, now, state, mp)
assertLockHeld(&ts.lock) // t is unlocked now, but not ts
return 0
}
// unlockAndRunTimer unlocks and runs a single timer.
// The caller must have locked the timers for pp.
// unlockAndRun unlocks and runs a single timer.
// The caller must have locked ts.
// This will temporarily unlock the timers while running the timer function.
//
//go:systemstack
func unlockAndRunTimer(pp *p, t *timer, now int64, state uint32, mp *m) {
func (ts *timers) unlockAndRun(t *timer, now int64, state uint32, mp *m) {
assertLockHeld(&ts.lock)
if raceenabled {
ppcur := getg().m.p.ptr()
if ppcur.timerRaceCtx == 0 {
ppcur.timerRaceCtx = racegostart(abi.FuncPCABIInternal(runtimer) + sys.PCQuantum)
tsLocal := &getg().m.p.ptr().timers
if tsLocal.raceCtx == 0 {
tsLocal.raceCtx = racegostart(abi.FuncPCABIInternal((*timers).run) + sys.PCQuantum)
}
raceacquirectx(ppcur.timerRaceCtx, unsafe.Pointer(t))
raceacquirectx(tsLocal.raceCtx, unsafe.Pointer(t))
}
f := t.f
@ -680,23 +714,21 @@ func unlockAndRunTimer(pp *p, t *timer, now int64, state uint32, mp *m) {
} else {
t.nextWhen = 0
}
state, _ = t.updateWhen(state|timerNextWhen, pp)
state, _ = t.updateWhen(state|timerNextWhen, ts)
t.unlock(state, mp)
if raceenabled {
// Temporarily use the current P's racectx for g0.
gp := getg()
if gp.racectx != 0 {
throw("runOneTimer: unexpected racectx")
throw("unexpected racectx")
}
gp.racectx = gp.m.p.ptr().timerRaceCtx
gp.racectx = gp.m.p.ptr().timers.raceCtx
}
unlock(&pp.timersLock)
unlock(&ts.lock)
f(arg, seq)
lock(&pp.timersLock)
lock(&ts.lock)
if raceenabled {
gp := getg()
@ -730,25 +762,26 @@ func unlockAndRunTimer(pp *p, t *timer, now int64, state uint32, mp *m) {
// TODO(prattmic): Additional targeted updates may improve the above cases.
// e.g., updating the mask when stealing a timer.
func updateTimerPMask(pp *p) {
if pp.numTimers.Load() > 0 {
if pp.timers.len.Load() > 0 {
return
}
// Looks like there are no timers, however another P may transiently
// decrement numTimers when handling a timerModified timer in
// checkTimers. We must take timersLock to serialize with these changes.
lock(&pp.timersLock)
if pp.numTimers.Load() == 0 {
lock(&pp.timers.lock)
if pp.timers.len.Load() == 0 {
timerpMask.clear(pp.id)
}
unlock(&pp.timersLock)
unlock(&pp.timers.lock)
}
// verifyTimerHeap verifies that the timer heap is in a valid state.
// verifyTimerHeap verifies that the timers is in a valid state.
// This is only for debugging, and is only called if verifyTimers is true.
// The caller must have locked the timers.
func verifyTimerHeap(pp *p) {
for i, t := range pp.timers {
// The caller must have locked ts.
func (ts *timers) verify() {
assertLockHeld(&ts.lock)
for i, t := range ts.heap {
if i == 0 {
// First timer has no parent.
continue
@ -756,38 +789,38 @@ func verifyTimerHeap(pp *p) {
// The heap is 4-ary. See siftupTimer and siftdownTimer.
p := (i - 1) / 4
if t.when < pp.timers[p].when {
print("bad timer heap at ", i, ": ", p, ": ", pp.timers[p].when, ", ", i, ": ", t.when, "\n")
if t.when < ts.heap[p].when {
print("bad timer heap at ", i, ": ", p, ": ", ts.heap[p].when, ", ", i, ": ", t.when, "\n")
throw("bad timer heap")
}
}
if numTimers := int(pp.numTimers.Load()); len(pp.timers) != numTimers {
println("timer heap len", len(pp.timers), "!= numTimers", numTimers)
if n := int(ts.len.Load()); len(ts.heap) != n {
println("timer heap len", len(ts.heap), "!= atomic len", n)
throw("bad timer heap len")
}
}
// updateTimer0When sets the P's timer0When field.
// The caller must have locked the timers for pp.
func updateTimer0When(pp *p) {
if len(pp.timers) == 0 {
pp.timer0When.Store(0)
// updateTimer0When sets ts.timer0When to ts.heap[0].when.
// The caller must have locked ts.
func (ts *timers) updateTimer0When() {
assertLockHeld(&ts.lock)
if len(ts.heap) == 0 {
ts.timer0When.Store(0)
} else {
pp.timer0When.Store(pp.timers[0].when)
ts.timer0When.Store(ts.heap[0].when)
}
}
// updateTimerModifiedEarliest updates the recorded nextwhen field of the
// earlier timerModifiedEarier value.
// The timers for pp will not be locked.
func updateTimerModifiedEarliest(pp *p, nextwhen int64) {
// updateTimerModifiedEarliest updates ts.timerModifiedEarliest to be <= nextwhen.
// The timers for ts need not be locked.
func (ts *timers) updateTimerModifiedEarliest(nextwhen int64) {
for {
old := pp.timerModifiedEarliest.Load()
old := ts.timerModifiedEarliest.Load()
if old != 0 && old < nextwhen {
return
}
if pp.timerModifiedEarliest.CompareAndSwap(old, nextwhen) {
if ts.timerModifiedEarliest.CompareAndSwap(old, nextwhen) {
return
}
}
@ -808,12 +841,12 @@ func timeSleepUntil() int64 {
continue
}
w := pp.timer0When.Load()
w := pp.timers.timer0When.Load()
if w != 0 && w < next {
next = w
}
w = pp.timerModifiedEarliest.Load()
w = pp.timers.timerModifiedEarliest.Load()
if w != 0 && w < next {
next = w
}
@ -831,10 +864,10 @@ func timeSleepUntil() int64 {
// "panic holding locks" message. Instead, we panic while not
// holding a lock.
// siftupTimer puts the timer at position i in the right place
// siftUp puts the timer at position i in the right place
// in the heap by moving it up toward the top of the heap.
// It returns the smallest changed index.
func siftupTimer(t []*timer, i int) int {
func (ts *timers) siftUp(i int) {
t := ts.heap
if i >= len(t) {
badTimer()
}
@ -854,12 +887,12 @@ func siftupTimer(t []*timer, i int) int {
if tmp != t[i] {
t[i] = tmp
}
return i
}
// siftdownTimer puts the timer at position i in the right place
// siftDown puts the timer at position i in the right place
// in the heap by moving it down toward the bottom of the heap.
func siftdownTimer(t []*timer, i int) {
func (ts *timers) siftDown(i int) {
t := ts.heap
n := len(t)
if i >= n {
badTimer()
@ -902,16 +935,16 @@ func siftdownTimer(t []*timer, i int) {
}
}
// initTimerHeap reestablishes the heap order in the slice t.
// It takes O(n) time for n=len(t), not the O(n log n) of n repeated add operations.
func initTimerHeap(t []*timer) {
// initHeap reestablishes the heap order in the slice ts.heap.
// It takes O(n) time for n=len(ts.heap), not the O(n log n) of n repeated add operations.
func (ts *timers) initHeap() {
// Last possible element that needs sifting down is parent of last element;
// last element is len(t)-1; parent of last element is (len(t)-1-1)/4.
if len(t) <= 1 {
if len(ts.heap) <= 1 {
return
}
for i := (len(t) - 1 - 1) / 4; i >= 0; i-- {
siftdownTimer(t, i)
for i := (len(ts.heap) - 1 - 1) / 4; i >= 0; i-- {
ts.siftDown(i)
}
}

View File

@ -4,6 +4,8 @@
package time
import "unsafe"
// Sleep pauses the current goroutine for at least the duration d.
// A negative or zero duration causes Sleep to return immediately.
func Sleep(d Duration)
@ -11,7 +13,7 @@ func Sleep(d Duration)
// Interface to timers implemented in package runtime.
// Must be in sync with ../runtime/time.go:/^type timer
type runtimeTimer struct {
pp uintptr
ts unsafe.Pointer
when int64
period int64
f func(any, uintptr) // NOTE: must not be closure