internal/intern: delete unused package

The functionality within has been replaced with the unique package, and
all uses of it have been replaced by uses of the unique package.

Change-Id: I399ca72972c712711d4ec6a5ddbdbcba7088ecd1
Reviewed-on: https://go-review.googlesource.com/c/go/+/577036
Reviewed-by: David Chase <drchase@google.com>
LUCI-TryBot-Result: Go LUCI <golang-scoped@luci-project-accounts.iam.gserviceaccount.com>
This commit is contained in:
Michael Anthony Knyszek 2024-04-05 22:09:30 +00:00 committed by Michael Knyszek
parent 6737f4cee5
commit aa63ef4b8b
3 changed files with 0 additions and 382 deletions

View File

@ -373,10 +373,6 @@ var depsRules = `
golang.org/x/net/lif,
golang.org/x/net/route;
os, runtime, strconv, sync, unsafe,
internal/godebug
< internal/intern;
internal/bytealg, internal/itoa, math/bits, sort, strconv, unique
< net/netip;

View File

@ -1,181 +0,0 @@
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package intern lets you make smaller comparable values by boxing
// a larger comparable value (such as a 16 byte string header) down
// into a globally unique 8 byte pointer.
//
// The globally unique pointers are garbage collected with weak
// references and finalizers. This package hides that.
package intern
import (
"internal/godebug"
"runtime"
"sync"
"unsafe"
)
// A Value pointer is the handle to an underlying comparable value.
// See func Get for how Value pointers may be used.
type Value struct {
_ [0]func() // prevent people from accidentally using value type as comparable
cmpVal any
// resurrected is guarded by mu (for all instances of Value).
// It is set true whenever v is synthesized from a uintptr.
resurrected bool
}
// Get returns the comparable value passed to the Get func
// that returned v.
func (v *Value) Get() any { return v.cmpVal }
// key is a key in our global value map.
// It contains type-specialized fields to avoid allocations
// when converting common types to empty interfaces.
type key struct {
s string
cmpVal any
// isString reports whether key contains a string.
// Without it, the zero value of key is ambiguous.
isString bool
}
// keyFor returns a key to use with cmpVal.
func keyFor(cmpVal any) key {
if s, ok := cmpVal.(string); ok {
return key{s: s, isString: true}
}
return key{cmpVal: cmpVal}
}
// Value returns a *Value built from k.
func (k key) Value() *Value {
if k.isString {
return &Value{cmpVal: k.s}
}
return &Value{cmpVal: k.cmpVal}
}
var (
// mu guards valMap, a weakref map of *Value by underlying value.
// It also guards the resurrected field of all *Values.
mu sync.Mutex
valMap = map[key]uintptr{} // to uintptr(*Value)
valSafe = safeMap() // non-nil in safe+leaky mode
)
var intern = godebug.New("#intern")
// safeMap returns a non-nil map if we're in safe-but-leaky mode,
// as controlled by GODEBUG=intern=leaky
func safeMap() map[key]*Value {
if intern.Value() == "leaky" {
return map[key]*Value{}
}
return nil
}
// Get returns a pointer representing the comparable value cmpVal.
//
// The returned pointer will be the same for Get(v) and Get(v2)
// if and only if v == v2, and can be used as a map key.
func Get(cmpVal any) *Value {
return get(keyFor(cmpVal))
}
// GetByString is identical to Get, except that it is specialized for strings.
// This avoids an allocation from putting a string into an interface{}
// to pass as an argument to Get.
func GetByString(s string) *Value {
return get(key{s: s, isString: true})
}
// We play unsafe games that violate Go's rules (and assume a non-moving
// collector). So we quiet Go here.
// See the comment below Get for more implementation details.
//
//go:nocheckptr
func get(k key) *Value {
mu.Lock()
defer mu.Unlock()
var v *Value
if valSafe != nil {
v = valSafe[k]
} else if addr, ok := valMap[k]; ok {
v = (*Value)(unsafe.Pointer(addr))
v.resurrected = true
}
if v != nil {
return v
}
v = k.Value()
if valSafe != nil {
valSafe[k] = v
} else {
// SetFinalizer before uintptr conversion (theoretical concern;
// see https://github.com/go4org/intern/issues/13)
runtime.SetFinalizer(v, finalize)
valMap[k] = uintptr(unsafe.Pointer(v))
}
return v
}
func finalize(v *Value) {
mu.Lock()
defer mu.Unlock()
if v.resurrected {
// We lost the race. Somebody resurrected it while we
// were about to finalize it. Try again next round.
v.resurrected = false
runtime.SetFinalizer(v, finalize)
return
}
delete(valMap, keyFor(v.cmpVal))
}
// Interning is simple if you don't require that unused values be
// garbage collectable. But we do require that; we don't want to be
// DOS vector. We do this by using a uintptr to hide the pointer from
// the garbage collector, and using a finalizer to eliminate the
// pointer when no other code is using it.
//
// The obvious implementation of this is to use a
// map[interface{}]uintptr-of-*interface{}, and set up a finalizer to
// delete from the map. Unfortunately, this is racy. Because pointers
// are being created in violation of Go's unsafety rules, it's
// possible to create a pointer to a value concurrently with the GC
// concluding that the value can be collected. There are other races
// that break the equality invariant as well, but the use-after-free
// will cause a runtime crash.
//
// To make this work, the finalizer needs to know that no references
// have been unsafely created since the finalizer was set up. To do
// this, values carry a "resurrected" sentinel, which gets set
// whenever a pointer is unsafely created. If the finalizer encounters
// the sentinel, it clears the sentinel and delays collection for one
// additional GC cycle, by re-installing itself as finalizer. This
// ensures that the unsafely created pointer is visible to the GC, and
// will correctly prevent collection.
//
// This technique does mean that interned values that get reused take
// at least 3 GC cycles to fully collect (1 to clear the sentinel, 1
// to clean up the unsafe map, 1 to be actually deleted).
//
// @ianlancetaylor commented in
// https://github.com/golang/go/issues/41303#issuecomment-717401656
// that it is possible to implement weak references in terms of
// finalizers without unsafe. Unfortunately, the approach he outlined
// does not work here, for two reasons. First, there is no way to
// construct a strong pointer out of a weak pointer; our map stores
// weak pointers, but we must return strong pointers to callers.
// Second, and more fundamentally, we must return not just _a_ strong
// pointer to callers, but _the same_ strong pointer to callers. In
// order to return _the same_ strong pointer to callers, we must track
// it, which is exactly what we cannot do with strong pointers.
//
// See https://github.com/inetaf/netaddr/issues/53 for more
// discussion, and https://github.com/go4org/intern/issues/2 for an
// illustration of the subtleties at play.

View File

@ -1,197 +0,0 @@
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package intern
import (
"fmt"
"runtime"
"testing"
)
func TestBasics(t *testing.T) {
clearMap()
foo := Get("foo")
bar := Get("bar")
empty := Get("")
nilEface := Get(nil)
i := Get(0x7777777)
foo2 := Get("foo")
bar2 := Get("bar")
empty2 := Get("")
nilEface2 := Get(nil)
i2 := Get(0x7777777)
foo3 := GetByString("foo")
empty3 := GetByString("")
if foo.Get() != foo2.Get() {
t.Error("foo/foo2 values differ")
}
if foo.Get() != foo3.Get() {
t.Error("foo/foo3 values differ")
}
if foo.Get() != "foo" {
t.Error("foo.Get not foo")
}
if foo != foo2 {
t.Error("foo/foo2 pointers differ")
}
if foo != foo3 {
t.Error("foo/foo3 pointers differ")
}
if bar.Get() != bar2.Get() {
t.Error("bar values differ")
}
if bar.Get() != "bar" {
t.Error("bar.Get not bar")
}
if bar != bar2 {
t.Error("bar pointers differ")
}
if i.Get() != i.Get() {
t.Error("i values differ")
}
if i.Get() != 0x7777777 {
t.Error("i.Get not 0x7777777")
}
if i != i2 {
t.Error("i pointers differ")
}
if empty.Get() != empty2.Get() {
t.Error("empty/empty2 values differ")
}
if empty.Get() != empty.Get() {
t.Error("empty/empty3 values differ")
}
if empty.Get() != "" {
t.Error("empty.Get not empty string")
}
if empty != empty2 {
t.Error("empty/empty2 pointers differ")
}
if empty != empty3 {
t.Error("empty/empty3 pointers differ")
}
if nilEface.Get() != nilEface2.Get() {
t.Error("nilEface values differ")
}
if nilEface.Get() != nil {
t.Error("nilEface.Get not nil")
}
if nilEface != nilEface2 {
t.Error("nilEface pointers differ")
}
if n := mapLen(); n != 5 {
t.Errorf("map len = %d; want 4", n)
}
wantEmpty(t)
}
func wantEmpty(t testing.TB) {
t.Helper()
const gcTries = 5000
for try := 0; try < gcTries; try++ {
runtime.GC()
n := mapLen()
if n == 0 {
break
}
if try == gcTries-1 {
t.Errorf("map len = %d after (%d GC tries); want 0, contents: %v", n, gcTries, mapKeys())
}
}
}
func TestStress(t *testing.T) {
iters := 10000
if testing.Short() {
iters = 1000
}
var sink []byte
for i := 0; i < iters; i++ {
_ = Get("foo")
sink = make([]byte, 1<<20)
}
_ = sink
}
func BenchmarkStress(b *testing.B) {
done := make(chan struct{})
defer close(done)
go func() {
for {
select {
case <-done:
return
default:
}
runtime.GC()
}
}()
clearMap()
v1 := Get("foo")
b.ReportAllocs()
b.RunParallel(func(pb *testing.PB) {
for pb.Next() {
v2 := Get("foo")
if v1 != v2 {
b.Fatal("wrong value")
}
// And also a key we don't retain:
_ = Get("bar")
}
})
runtime.GC()
wantEmpty(b)
}
func mapLen() int {
mu.Lock()
defer mu.Unlock()
return len(valMap)
}
func mapKeys() (keys []string) {
mu.Lock()
defer mu.Unlock()
for k := range valMap {
keys = append(keys, fmt.Sprint(k))
}
return keys
}
func clearMap() {
mu.Lock()
defer mu.Unlock()
clear(valMap)
}
var (
globalString = "not a constant"
sink string
)
func TestGetByStringAllocs(t *testing.T) {
allocs := int(testing.AllocsPerRun(100, func() {
GetByString(globalString)
}))
if allocs != 0 {
t.Errorf("GetString allocated %d objects, want 0", allocs)
}
}
func BenchmarkGetByString(b *testing.B) {
b.ReportAllocs()
for i := 0; i < b.N; i++ {
v := GetByString(globalString)
sink = v.Get().(string)
}
}