mirror of https://github.com/golang/go.git
crypto/ecdsa: make Sign safe with broken entropy sources
ECDSA is unsafe to use if an entropy source produces predictable output for the ephemeral nonces. E.g., [Nguyen]. A simple countermeasure is to hash the secret key, the message, and entropy together to seed a CSPRNG, from which the ephemeral key is derived. -- This is a minimalist (in terms of patch size) solution, though not the most parsimonious in its use of primitives: - csprng_key = ChopMD-256(SHA2-512(priv.D||entropy||hash)) - reader = AES-256-CTR(k=csprng_key) This, however, provides at most 128-bit collision-resistance, so that Adv will have a term related to the number of messages signed that is significantly worse than plain ECDSA. This does not seem to be of any practical importance. ChopMD-256(SHA2-512(x)) is used, rather than SHA2-256(x), for two sets of reasons: *Practical:* SHA2-512 has a larger state and 16 more rounds; it is likely non-generically stronger than SHA2-256. And, AFAIK, cryptanalysis backs this up. (E.g., [Biryukov] gives a distinguisher on 47-round SHA2-256 with cost < 2^85.) This is well below a reasonable security-strength target. *Theoretical:* [Coron] and [Chang] show that Chop-MD(F(x)) is indifferentiable from a random oracle for slightly beyond the birthday barrier. It seems likely that this makes a generic security proof that this construction remains UF-CMA is possible in the indifferentiability framework. -- Many thanks to Payman Mohassel for reviewing this construction; any mistakes are mine, however. And, as he notes, reusing the private key in this way means that the generic-group (non-RO) proof of ECDSA's security given in [Brown] no longer directly applies. -- [Brown]: http://www.cacr.math.uwaterloo.ca/techreports/2000/corr2000-54.ps "Brown. The exact security of ECDSA. 2000" [Coron]: https://www.cs.nyu.edu/~puniya/papers/merkle.pdf "Coron et al. Merkle-Damgard revisited. 2005" [Chang]: https://www.iacr.org/archive/fse2008/50860436/50860436.pdf "Chang and Nandi. Improved indifferentiability security analysis of chopMD hash function. 2008" [Biryukov]: http://www.iacr.org/archive/asiacrypt2011/70730269/70730269.pdf "Biryukov et al. Second-order differential collisions for reduced SHA-256. 2011" [Nguyen]: ftp://ftp.di.ens.fr/pub/users/pnguyen/PubECDSA.ps "Nguyen and Shparlinski. The insecurity of the elliptic curve digital signature algorithm with partially known nonces. 2003" Fixes #9452 Tests: TestNonceSafety: Check that signatures are safe even with a broken entropy source. TestINDCCA: Check that signatures remain non-deterministic with a functional entropy source. Change-Id: Ie7e04057a3a26e6becb80e845ecb5004bb482745 Reviewed-on: https://go-review.googlesource.com/2422 Reviewed-by: Adam Langley <agl@golang.org>
This commit is contained in:
parent
52d277906d
commit
8d7bf2291b
|
|
@ -4,6 +4,10 @@
|
|||
|
||||
// Package ecdsa implements the Elliptic Curve Digital Signature Algorithm, as
|
||||
// defined in FIPS 186-3.
|
||||
//
|
||||
// This implementation derives the nonce from an AES-CTR CSPRNG keyed by
|
||||
// ChopMD(256, SHA2-512(priv.D || entropy || hash)). The CSPRNG key is IRO by
|
||||
// a result of Coron; the AES-CTR stream is IRO under standard assumptions.
|
||||
package ecdsa
|
||||
|
||||
// References:
|
||||
|
|
@ -14,12 +18,19 @@ package ecdsa
|
|||
|
||||
import (
|
||||
"crypto"
|
||||
"crypto/aes"
|
||||
"crypto/cipher"
|
||||
"crypto/elliptic"
|
||||
"crypto/sha512"
|
||||
"encoding/asn1"
|
||||
"io"
|
||||
"math/big"
|
||||
)
|
||||
|
||||
const (
|
||||
aesIV = "IV for ECDSA CTR"
|
||||
)
|
||||
|
||||
// PublicKey represents an ECDSA public key.
|
||||
type PublicKey struct {
|
||||
elliptic.Curve
|
||||
|
|
@ -123,6 +134,38 @@ func fermatInverse(k, N *big.Int) *big.Int {
|
|||
// pair of integers. The security of the private key depends on the entropy of
|
||||
// rand.
|
||||
func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err error) {
|
||||
// Get max(log2(q) / 2, 256) bits of entropy from rand.
|
||||
entropylen := (priv.Curve.Params().BitSize + 7) / 16
|
||||
if entropylen > 32 {
|
||||
entropylen = 32
|
||||
}
|
||||
entropy := make([]byte, entropylen)
|
||||
_, err = rand.Read(entropy)
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
|
||||
// Initialize an SHA-512 hash context; digest ...
|
||||
md := sha512.New()
|
||||
md.Write(priv.D.Bytes()) // the private key,
|
||||
md.Write(entropy) // the entropy,
|
||||
md.Write(hash) // and the input hash;
|
||||
key := md.Sum(nil)[:32] // and compute ChopMD-256(SHA-512),
|
||||
// which is an indifferentiable MAC.
|
||||
|
||||
// Create an AES-CTR instance to use as a CSPRNG.
|
||||
block, err := aes.NewCipher(key)
|
||||
if err != nil {
|
||||
return nil, nil, err
|
||||
}
|
||||
|
||||
// Create a CSPRNG that xors a stream of zeros with
|
||||
// the output of the AES-CTR instance.
|
||||
csprng := cipher.StreamReader{
|
||||
R: zeroReader,
|
||||
S: cipher.NewCTR(block, []byte(aesIV)),
|
||||
}
|
||||
|
||||
// See [NSA] 3.4.1
|
||||
c := priv.PublicKey.Curve
|
||||
N := c.Params().N
|
||||
|
|
@ -130,7 +173,7 @@ func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err err
|
|||
var k, kInv *big.Int
|
||||
for {
|
||||
for {
|
||||
k, err = randFieldElement(c, rand)
|
||||
k, err = randFieldElement(c, csprng)
|
||||
if err != nil {
|
||||
r = nil
|
||||
return
|
||||
|
|
@ -187,3 +230,17 @@ func Verify(pub *PublicKey, hash []byte, r, s *big.Int) bool {
|
|||
x.Mod(x, N)
|
||||
return x.Cmp(r) == 0
|
||||
}
|
||||
|
||||
type zr struct {
|
||||
io.Reader
|
||||
}
|
||||
|
||||
// Read replaces the contents of dst with zeros.
|
||||
func (z *zr) Read(dst []byte) (n int, err error) {
|
||||
for i := range dst {
|
||||
dst[i] = 0
|
||||
}
|
||||
return len(dst), nil
|
||||
}
|
||||
|
||||
var zeroReader = &zr{}
|
||||
|
|
|
|||
|
|
@ -72,6 +72,78 @@ func TestSignAndVerify(t *testing.T) {
|
|||
testSignAndVerify(t, elliptic.P521(), "p521")
|
||||
}
|
||||
|
||||
func testNonceSafety(t *testing.T, c elliptic.Curve, tag string) {
|
||||
priv, _ := GenerateKey(c, rand.Reader)
|
||||
|
||||
hashed := []byte("testing")
|
||||
r0, s0, err := Sign(zeroReader, priv, hashed)
|
||||
if err != nil {
|
||||
t.Errorf("%s: error signing: %s", tag, err)
|
||||
return
|
||||
}
|
||||
|
||||
hashed = []byte("testing...")
|
||||
r1, s1, err := Sign(zeroReader, priv, hashed)
|
||||
if err != nil {
|
||||
t.Errorf("%s: error signing: %s", tag, err)
|
||||
return
|
||||
}
|
||||
|
||||
if s0.Cmp(s1) == 0 {
|
||||
// This should never happen.
|
||||
t.Errorf("%s: the signatures on two different messages were the same")
|
||||
}
|
||||
|
||||
if r0.Cmp(r1) == 0 {
|
||||
t.Errorf("%s: the nonce used for two diferent messages was the same")
|
||||
}
|
||||
}
|
||||
|
||||
func TestNonceSafety(t *testing.T) {
|
||||
testNonceSafety(t, elliptic.P224(), "p224")
|
||||
if testing.Short() {
|
||||
return
|
||||
}
|
||||
testNonceSafety(t, elliptic.P256(), "p256")
|
||||
testNonceSafety(t, elliptic.P384(), "p384")
|
||||
testNonceSafety(t, elliptic.P521(), "p521")
|
||||
}
|
||||
|
||||
func testINDCCA(t *testing.T, c elliptic.Curve, tag string) {
|
||||
priv, _ := GenerateKey(c, rand.Reader)
|
||||
|
||||
hashed := []byte("testing")
|
||||
r0, s0, err := Sign(rand.Reader, priv, hashed)
|
||||
if err != nil {
|
||||
t.Errorf("%s: error signing: %s", tag, err)
|
||||
return
|
||||
}
|
||||
|
||||
r1, s1, err := Sign(rand.Reader, priv, hashed)
|
||||
if err != nil {
|
||||
t.Errorf("%s: error signing: %s", tag, err)
|
||||
return
|
||||
}
|
||||
|
||||
if s0.Cmp(s1) == 0 {
|
||||
t.Errorf("%s: two signatures of the same message produced the same result")
|
||||
}
|
||||
|
||||
if r0.Cmp(r1) == 0 {
|
||||
t.Errorf("%s: two signatures of the same message produced the same nonce")
|
||||
}
|
||||
}
|
||||
|
||||
func TestINDCCA(t *testing.T) {
|
||||
testINDCCA(t, elliptic.P224(), "p224")
|
||||
if testing.Short() {
|
||||
return
|
||||
}
|
||||
testINDCCA(t, elliptic.P256(), "p256")
|
||||
testINDCCA(t, elliptic.P384(), "p384")
|
||||
testINDCCA(t, elliptic.P521(), "p521")
|
||||
}
|
||||
|
||||
func fromHex(s string) *big.Int {
|
||||
r, ok := new(big.Int).SetString(s, 16)
|
||||
if !ok {
|
||||
|
|
|
|||
Loading…
Reference in New Issue