mirror of https://github.com/golang/go.git
crypto/rsa: port Validate to bigmod
This is quite a bit slower (almost entirely in the e * d reductions,
which could be optimized), but the slowdown is only 12% of a signature
operation.
Also, call Validate at the end of GenerateKey as a backstop. Key
generation is so incredibly slow that the extra time is negligible.
goos: darwin
goarch: arm64
pkg: crypto/rsa
cpu: Apple M2
│ ec9643bbed │ ec9643bbed-dirty │
│ sec/op │ sec/op vs base │
SignPSS/2048-8 869.8µ ± 1% 870.2µ ± 0% ~ (p=0.937 n=6)
GenerateKey/2048-8 104.2m ± 17% 106.9m ± 10% ~ (p=0.589 n=6)
ParsePKCS8PrivateKey/2048-8 28.54µ ± 2% 136.78µ ± 8% +379.23% (p=0.002 n=6)
Fixes #57751
Co-authored-by: Derek Parker <parkerderek86@gmail.com>
Change-Id: Ifb476859207925a018b433c16dd62fb767afd2d5
Reviewed-on: https://go-review.googlesource.com/c/go/+/630517
Auto-Submit: Filippo Valsorda <filippo@golang.org>
Reviewed-by: Roland Shoemaker <roland@golang.org>
Reviewed-by: Russ Cox <rsc@golang.org>
LUCI-TryBot-Result: Go LUCI <golang-scoped@luci-project-accounts.iam.gserviceaccount.com>
This commit is contained in:
parent
3b42687c56
commit
8cecfad2a9
|
|
@ -202,6 +202,19 @@ func (x *Nat) setBytes(b []byte) error {
|
|||
return nil
|
||||
}
|
||||
|
||||
// SetUint assigns x = y, and returns an error if y >= m.
|
||||
//
|
||||
// The output will be resized to the size of m and overwritten.
|
||||
func (x *Nat) SetUint(y uint, m *Modulus) (*Nat, error) {
|
||||
x.resetFor(m)
|
||||
// Modulus is never zero, so always at least one limb.
|
||||
x.limbs[0] = y
|
||||
if x.cmpGeq(m.nat) == yes {
|
||||
return nil, errors.New("input overflows the modulus")
|
||||
}
|
||||
return x, nil
|
||||
}
|
||||
|
||||
// Equal returns 1 if x == y, and 0 otherwise.
|
||||
//
|
||||
// Both operands must have the same announced length.
|
||||
|
|
|
|||
|
|
@ -20,8 +20,7 @@
|
|||
// Decrypter and Signer interfaces from the crypto package.
|
||||
//
|
||||
// Operations involving private keys are implemented using constant-time
|
||||
// algorithms, except for [GenerateKey], [PrivateKey.Precompute], and
|
||||
// [PrivateKey.Validate].
|
||||
// algorithms, except for [GenerateKey] and [PrivateKey.Precompute].
|
||||
//
|
||||
// # Minimum key size
|
||||
//
|
||||
|
|
@ -236,34 +235,67 @@ func (priv *PrivateKey) Validate() error {
|
|||
return errors.New("crypto/rsa: public exponent too large")
|
||||
}
|
||||
|
||||
// Check that Πprimes == n.
|
||||
modulus := new(big.Int).Set(bigOne)
|
||||
for _, prime := range priv.Primes {
|
||||
// Any primes ≤ 1 will cause divide-by-zero panics later.
|
||||
if prime.Cmp(bigOne) <= 0 {
|
||||
return errors.New("crypto/rsa: invalid prime value")
|
||||
}
|
||||
modulus.Mul(modulus, prime)
|
||||
N, err := bigmod.NewModulus(pub.N.Bytes())
|
||||
if err != nil {
|
||||
return fmt.Errorf("crypto/rsa: invalid public modulus: %v", err)
|
||||
}
|
||||
if modulus.Cmp(priv.N) != 0 {
|
||||
return errors.New("crypto/rsa: invalid modulus")
|
||||
d, err := bigmod.NewNat().SetBytes(priv.D.Bytes(), N)
|
||||
if err != nil {
|
||||
return fmt.Errorf("crypto/rsa: invalid private exponent: %v", err)
|
||||
}
|
||||
one, err := bigmod.NewNat().SetUint(1, N)
|
||||
if err != nil {
|
||||
return fmt.Errorf("crypto/rsa: internal error: %v", err)
|
||||
}
|
||||
|
||||
// Check that de ≡ 1 mod p-1, for each prime.
|
||||
// This implies that e is coprime to each p-1 as e has a multiplicative
|
||||
// inverse. Therefore e is coprime to lcm(p-1,q-1,r-1,...) =
|
||||
// exponent(ℤ/nℤ). It also implies that a^de ≡ a mod p as a^(p-1) ≡ 1
|
||||
// mod p. Thus a^de ≡ a mod n for all a coprime to n, as required.
|
||||
congruence := new(big.Int)
|
||||
de := new(big.Int).SetInt64(int64(priv.E))
|
||||
de.Mul(de, priv.D)
|
||||
Π := bigmod.NewNat().ExpandFor(N)
|
||||
for _, prime := range priv.Primes {
|
||||
pminus1 := new(big.Int).Sub(prime, bigOne)
|
||||
congruence.Mod(de, pminus1)
|
||||
if congruence.Cmp(bigOne) != 0 {
|
||||
p, err := bigmod.NewNat().SetBytes(prime.Bytes(), N)
|
||||
if err != nil {
|
||||
return fmt.Errorf("crypto/rsa: invalid prime: %v", err)
|
||||
}
|
||||
if p.IsZero() == 1 {
|
||||
return errors.New("crypto/rsa: invalid prime")
|
||||
}
|
||||
Π.Mul(p, N)
|
||||
|
||||
// Check that de ≡ 1 mod p-1, for each prime.
|
||||
// This implies that e is coprime to each p-1 as e has a multiplicative
|
||||
// inverse. Therefore e is coprime to lcm(p-1,q-1,r-1,...) =
|
||||
// exponent(ℤ/nℤ). It also implies that a^de ≡ a mod p as a^(p-1) ≡ 1
|
||||
// mod p. Thus a^de ≡ a mod n for all a coprime to n, as required.
|
||||
|
||||
p.Sub(one, N)
|
||||
if p.IsZero() == 1 {
|
||||
return errors.New("crypto/rsa: invalid prime")
|
||||
}
|
||||
pMinus1, err := bigmod.NewModulus(p.Bytes(N))
|
||||
if err != nil {
|
||||
return fmt.Errorf("crypto/rsa: internal error: %v", err)
|
||||
}
|
||||
|
||||
e, err := bigmod.NewNat().SetUint(uint(pub.E), pMinus1)
|
||||
if err != nil {
|
||||
return fmt.Errorf("crypto/rsa: invalid public exponent: %v", err)
|
||||
}
|
||||
one, err := bigmod.NewNat().SetUint(1, pMinus1)
|
||||
if err != nil {
|
||||
return fmt.Errorf("crypto/rsa: internal error: %v", err)
|
||||
}
|
||||
|
||||
de := bigmod.NewNat()
|
||||
de.Mod(d, pMinus1)
|
||||
de.Mul(e, pMinus1)
|
||||
de.Sub(one, pMinus1)
|
||||
if de.IsZero() != 1 {
|
||||
return errors.New("crypto/rsa: invalid exponents")
|
||||
}
|
||||
}
|
||||
// Check that Πprimes == n.
|
||||
if Π.IsZero() != 1 {
|
||||
return errors.New("crypto/rsa: invalid modulus")
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
|
|
@ -450,6 +482,10 @@ NextSetOfPrimes:
|
|||
}
|
||||
|
||||
priv.Precompute()
|
||||
if err := priv.Validate(); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return priv, nil
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -98,10 +98,10 @@ func TestNPrimeKeyGeneration(t *testing.T) {
|
|||
}
|
||||
|
||||
func TestImpossibleKeyGeneration(t *testing.T) {
|
||||
// This test ensures that trying to generate toy RSA keys doesn't enter
|
||||
// an infinite loop.
|
||||
// This test ensures that trying to generate or validate toy RSA keys
|
||||
// doesn't enter an infinite loop or panic.
|
||||
t.Setenv("GODEBUG", "rsa1024min=0")
|
||||
for i := 0; i < 32; i++ {
|
||||
for i := 0; i < 128; i++ {
|
||||
GenerateKey(rand.Reader, i)
|
||||
GenerateMultiPrimeKey(rand.Reader, 3, i)
|
||||
GenerateMultiPrimeKey(rand.Reader, 4, i)
|
||||
|
|
@ -184,7 +184,7 @@ func TestEverything(t *testing.T) {
|
|||
}
|
||||
|
||||
t.Setenv("GODEBUG", "rsa1024min=0")
|
||||
min := 32
|
||||
min := 128
|
||||
max := 560 // any smaller than this and not all tests will run
|
||||
if *allFlag {
|
||||
max = 2048
|
||||
|
|
|
|||
Loading…
Reference in New Issue