mirror of https://github.com/golang/go.git
spec: add section on type inference
Change-Id: Ic338788d6410ed0d09ad129811377ee9ce5ed496 Reviewed-on: https://go-review.googlesource.com/c/go/+/367954 Trust: Robert Griesemer <gri@golang.org> Reviewed-by: Ian Lance Taylor <iant@golang.org>
This commit is contained in:
parent
8314544bd6
commit
654d5f4b5d
385
doc/go_spec.html
385
doc/go_spec.html
|
|
@ -1,6 +1,6 @@
|
|||
<!--{
|
||||
"Title": "The Go Programming Language Specification - Go 1.18 Draft (incomplete)",
|
||||
"Subtitle": "Version of Jan 21, 2022",
|
||||
"Subtitle": "Version of Jan 28, 2022",
|
||||
"Path": "/ref/spec"
|
||||
}-->
|
||||
|
||||
|
|
@ -4128,8 +4128,8 @@ with the same underlying array.
|
|||
<h3 id="Instantiations">Instantiations</h3>
|
||||
|
||||
<p>
|
||||
A parameterized function or type is <i>instantiated</i> by substituting
|
||||
<i>type arguments</i> for the type parameters.
|
||||
A parameterized function or type is <i>instantiated</i> by substituting <i>type arguments</i>
|
||||
for the type parameters.
|
||||
Instantiation proceeds in two phases:
|
||||
</p>
|
||||
|
||||
|
|
@ -4201,6 +4201,385 @@ b := min[float64](2.0, 3) // b has value 2.0 of type float64
|
|||
c := min(b, -1) // c has value -1.0 of type float64
|
||||
</pre>
|
||||
|
||||
<h3 id="Type_inference">Type inference</h3>
|
||||
|
||||
<p>
|
||||
Missing type arguments may be <i>inferred</i> by a series of steps, described below.
|
||||
Each step attempts to use known information to infer additional type arguments.
|
||||
Type inference stops as soon as all type arguments are known.
|
||||
After type inference is complete, it is still necessary to substitute all type arguments
|
||||
for type parameters and verify that each type argument implements the relevant constraint;
|
||||
it is possible for an inferred type argument to fail to implement a constraint, in which
|
||||
case instantiation fails.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
Type inference is based on
|
||||
</p>
|
||||
|
||||
<ul>
|
||||
<li>
|
||||
a <a href="#Type_parameter_lists">type parameter list</a>
|
||||
</li>
|
||||
<li>
|
||||
a substitution map <i>M</i> initialized with the known type arguments, if any
|
||||
</li>
|
||||
<li>
|
||||
a (possibly empty) list of ordinary function arguments (in case of a function call only)
|
||||
</li>
|
||||
</ul>
|
||||
|
||||
<p>
|
||||
and then proceeds with the following steps:
|
||||
</p>
|
||||
|
||||
<ol>
|
||||
<li>
|
||||
apply <a href="#Function_argument_type_inference"><i>function argument type inference</i></a>
|
||||
to all <i>typed</i> ordinary function arguments
|
||||
</li>
|
||||
<li>
|
||||
apply <a href="#Constraint_type_inference"><i>constraint type inference</i></a>
|
||||
</li>
|
||||
<li>
|
||||
apply function argument type inference to all <i>untyped</i> ordinary function arguments
|
||||
using the default type for each of the untyped function arguments
|
||||
</li>
|
||||
<li>
|
||||
apply constraint type inference
|
||||
</li>
|
||||
</ol>
|
||||
|
||||
<p>
|
||||
If there are no ordinary or untyped function arguments, the respective steps are skipped.
|
||||
Constraint type inference is skipped if the previous step didn't infer any new type arguments,
|
||||
but it is run at least once if there are missing type arguments.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
The substitution map <i>M</i> is carried through all steps, and each step may add entries to <i>M</i>.
|
||||
The process stops as soon as <i>M</i> has a type argument for each type parameter or if an inference step fails.
|
||||
If an inference step fails, or if <i>M</i> is still missing type arguments after the last step, type inference fails.
|
||||
</p>
|
||||
|
||||
<h4 id="Type_unification">Type unification</h3>
|
||||
|
||||
<p>
|
||||
Type inference is based on <i>type unification</i>. A single unification step
|
||||
applies to a <a href="#Type_inference">substitution map</a> and two types, either
|
||||
or both of which may be or contain type parameters. The substitution map tracks
|
||||
the known (explicitly provided or already inferred) type arguments: the map
|
||||
contains an entry <code>P</code> → <code>A</code> for each type
|
||||
parameter <code>P</code> and corresponding known type argument <code>A</code>.
|
||||
During unification, known type arguments take the place of their corresponding type
|
||||
parameters when comparing types. Unification is the process of finding substitution
|
||||
map entries that make the two types equivalent.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
For unification, two types that don't contain any type parameters from the current type
|
||||
parameter list are <i>equivalent</i>
|
||||
if they are identical, or if they are channel types that are identical ignoring channel
|
||||
direction, or if their underlying types are equivalent.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
Unification works by comparing the structure of pairs of types: their structure
|
||||
disregarding type parameters must be identical, and types other than type parameters
|
||||
must be equivalent.
|
||||
A type parameter in one type may match any complete subtype in the other type;
|
||||
each successful match causes an entry to be added to the substitution map.
|
||||
If the structure differs, or types other than type parameters are not equivalent,
|
||||
unification fails.
|
||||
</p>
|
||||
|
||||
<!--
|
||||
TODO(gri) Somewhere we need to describe the process of adding an entry to the
|
||||
substitution map: if the entry is already present, the type argument
|
||||
values are themselves unified.
|
||||
-->
|
||||
|
||||
<p>
|
||||
For example, if <code>T1</code> and <code>T2</code> are type parameters,
|
||||
<code>[]map[int]bool</code> can be unified with any of the following:
|
||||
</p>
|
||||
|
||||
<pre>
|
||||
[]map[int]bool // types are identical
|
||||
T1 // adds T1 → []map[int]bool to substitution map
|
||||
[]T1 // adds T1 → map[int]bool to substitution map
|
||||
[]map[T1]T2 // adds T1 → int and T2 → bool to substitution map
|
||||
</pre>
|
||||
|
||||
<p>
|
||||
On the other hand, <code>[]map[int]bool</code> cannot be unified with any of
|
||||
</p>
|
||||
|
||||
<pre>
|
||||
int // int is not a slice
|
||||
struct{} // a struct is not a slice
|
||||
[]struct{} // a struct is not a map
|
||||
[]map[T1]string // map element types don't match
|
||||
</pre>
|
||||
|
||||
<p>
|
||||
As an exception to this general rule, because a <a href="#Type_definitions">defined type</a>
|
||||
<code>D</code> and a type literal <code>L</code> are never equivalent,
|
||||
unification compares the underlying type of <code>D</code> with <code>L</code> instead.
|
||||
For example, given the defined type
|
||||
</p>
|
||||
|
||||
<pre>
|
||||
type Vector []float64
|
||||
</pre>
|
||||
|
||||
<p>
|
||||
and the type literal <code>[]E</code>, unification compares <code>[]float64</code> with
|
||||
<code>[]E</code> and adds an entry <code>E</code> → <code>float64</code> to
|
||||
the substitution map.
|
||||
</p>
|
||||
|
||||
<h4 id="Function_argument_type_inference">Function argument type inference</h3>
|
||||
|
||||
<!-- In this section and the section on constraint type inference we start with examples
|
||||
rather than have the examples follow the rules as is customary elsewhere in spec.
|
||||
Hopefully this helps building an intuition and makes the rules easier to follow. -->
|
||||
|
||||
<p>
|
||||
Function argument type inference infers type arguments from function arguments:
|
||||
if a function parameter is declared with a type <code>T</code> that uses
|
||||
type parameters,
|
||||
<a href="#Type_unification">unifying</a> the type of the corresponding
|
||||
function argument with <code>T</code> may infer type arguments for the type
|
||||
parameters used by <code>T</code>.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
For instance, given the type-parameterized function
|
||||
</p>
|
||||
|
||||
<pre>
|
||||
func scale[Number ~int64|~float64|~complex128](v []Number, s Number) []Number
|
||||
</pre>
|
||||
|
||||
<p>
|
||||
and the call
|
||||
</p>
|
||||
|
||||
<pre>
|
||||
var vector []float64
|
||||
scaledVector := scale(vector, 42)
|
||||
</pre>
|
||||
|
||||
<p>
|
||||
the type argument for <code>Number</code> can be inferred from the function argument
|
||||
<code>vector</code> by unifying the type of <code>vector</code> with the corresponding
|
||||
parameter type: <code>[]float64</code> and <code>[]Number</code>
|
||||
match in structure and <code>float64</code> matches with <code>Number</code>.
|
||||
This adds the entry <code>Number</code> → <code>float64</code> to the
|
||||
<a href="#Type_unification">substitution map</a>.
|
||||
Untyped arguments, such as the second function argument <code>42</code> here, are ignored
|
||||
in the first round of function argument type inference and only considered if there are
|
||||
unresolved type parameters left.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
Function argument type inference can be used when the function has ordinary parameters
|
||||
whose types are defined using the function's type parameters. Inference happens in two
|
||||
separate phases; each phase operates on a specific list of (parameter, argument) pairs:
|
||||
</p>
|
||||
|
||||
<ol>
|
||||
<li>
|
||||
The list <i>Lt</i> contains all (parameter, argument) pairs where the parameter
|
||||
type uses type parameters and where the function argument is <i>typed</i>.
|
||||
</li>
|
||||
<li>
|
||||
The list <i>Lu</i> contains all remaining pairs where the parameter type is a single
|
||||
type parameter. In this list, the respective function arguments are untyped.
|
||||
</li>
|
||||
</ol>
|
||||
|
||||
<p>
|
||||
Any other (parameter, argument) pair is ignored.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
By construction, the arguments of the pairs in <i>Lu</i> are <i>untyped</i> constants
|
||||
(or the untyped boolean result of a comparison). And because <a href="#Constants">default types</a>
|
||||
of untyped values are always predeclared non-composite types, they can never match against
|
||||
a composite type, so it is sufficient to only consider parameter types that are single type
|
||||
parameters.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
Each list is processed in a separate phase:
|
||||
</p>
|
||||
|
||||
<ol>
|
||||
<li>
|
||||
In the first phase, the parameter and argument types of each pair in <i>Lt</i>
|
||||
are unified. If unification succeeds for a pair, it may yield new entries that
|
||||
are added to the substitution map <i>M</i>. If unification fails, type inference
|
||||
fails.
|
||||
</li>
|
||||
<li>
|
||||
The second phase considers the entries of list <i>Lu</i>. Type parameters for
|
||||
which the type argument has already been determined are ignored in this phase.
|
||||
For each remaining pair, the parameter type (which is a single type parameter) and
|
||||
the <a href="#Constants">default type</a> of the corresponding untyped argument is
|
||||
unified. If unification fails, type inference fails.
|
||||
</li>
|
||||
</ol>
|
||||
|
||||
<p>
|
||||
Example:
|
||||
</p>
|
||||
|
||||
<pre>
|
||||
func min[T constraints.Ordered](x, y T) T
|
||||
|
||||
var x int
|
||||
min(x, 2.0) // T is int, inferred from typed argument x; 2.0 is assignable to int
|
||||
min(1.0, 2.0) // T is float64, inferred from default type for 1.0 and matches default type for 2.0
|
||||
min(1.0, 2) // illegal: default type float64 (for 1.0) doesn't match default type int (for 2)
|
||||
</pre>
|
||||
|
||||
<h4 id="Constraint_type_inference">Constraint type inference</h3>
|
||||
|
||||
<!--
|
||||
The next paragraph needs to be updated for the new definition of structural type:
|
||||
The structural type of an interface is the single underlying type of its type set,
|
||||
if it exists. But for constraint type inference, if the type set consists of exactly
|
||||
one type, we want to use that one type (which may be a defined type, different from
|
||||
its underlying == structural type).
|
||||
-->
|
||||
|
||||
<p>
|
||||
Constraint type inference infers type arguments from already known
|
||||
type arguments by considering <a href="#Structure_of_interfaces">structural type constraints</a>:
|
||||
if the structural type <code>T</code> of a structural constraint is parameterized,
|
||||
<a href="#Type_unification">unifying</a> a known type argument with <code>T</code> may
|
||||
infer type arguments for other type parameters used by the structural type.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
For instance, consider the type parameter list with type parameters <code>List</code> and
|
||||
<code>Elem</code>:
|
||||
</p>
|
||||
|
||||
<pre>
|
||||
[List ~[]Elem, Elem any]
|
||||
</pre>
|
||||
|
||||
<p>
|
||||
Constraint type inference can deduce the type of <code>Elem</code> from the type argument
|
||||
for <code>List</code> because <code>Elem</code> is a type parameter in the structural constraint
|
||||
<code>~[]Elem</code> for <code>List</code>.
|
||||
If the type argument is <code>Bytes</code>:
|
||||
</p>
|
||||
|
||||
<pre>
|
||||
type Bytes []byte
|
||||
</pre>
|
||||
|
||||
<p>
|
||||
unifying the underlying type of <code>Bytes</code> with the structural constraint means
|
||||
unifying <code>[]byte</code> with <code>[]Elem</code>. That unification succeeds and yields
|
||||
the <a href="#Type_unification">substitution map</a> entry
|
||||
<code>Elem</code> → <code>byte</code>.
|
||||
Thus, in this example, constraint type inference can infer the second type argument from the
|
||||
first one.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
Generally, constraint type inference proceeds in two phases: Starting with a given
|
||||
substitution map <i>M</i>
|
||||
</p>
|
||||
|
||||
<ol>
|
||||
<li>
|
||||
For all type parameters with a structural constraint, unify the type parameter with the structural
|
||||
type of its constraint. If any unification fails, constraint type inference fails.
|
||||
</li>
|
||||
|
||||
<li>
|
||||
At this point, some entries in <i>M</i> may map type parameters to other
|
||||
type parameters or to types containing type parameters. For each entry
|
||||
<code>P</code> → <code>A</code> in <i>M</i> where <code>A</code> is or
|
||||
contains type parameters <code>Q</code> for which there exist entries
|
||||
<code>Q</code> → <code>B</code> in <i>M</i>, substitute those
|
||||
<code>Q</code> with the respective <code>B</code> in <code>A</code>.
|
||||
Stop when no further substitution is possible.
|
||||
</li>
|
||||
</ol>
|
||||
|
||||
<p>
|
||||
The result of constraint type inference is the final substitution map <i>M</i> from type
|
||||
parameters <code>P</code> to type arguments <code>A</code> where no type parameter <code>P</code>
|
||||
appears in any of the <code>A</code>.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
For instance, given the type parameter list
|
||||
</p>
|
||||
|
||||
<pre>
|
||||
[A any, B []C, C *A]
|
||||
</pre>
|
||||
|
||||
<p>
|
||||
and the single provided type argument <code>int</code> for type parameter <code>A</code>,
|
||||
the initial substitution map <i>M</i> contains the entry <code>A</code> → <code>int</code>.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
In the first phase, the type parameters <code>B</code> and <code>C</code> are unified
|
||||
with the structural type of their respective constraints. This adds the entries
|
||||
<code>B</code> → <code>[]C</code> and <code>C</code> → <code>*A</code>
|
||||
to <i>M</i>.
|
||||
|
||||
<p>
|
||||
At this point there are two entries in <i>M</i> where the right-hand side
|
||||
is or contains type parameters for which there exists other entries in <i>M</i>:
|
||||
<code>[]C</code> and <code>*A</code>.
|
||||
In the second phase, these type parameters are replaced with their respective
|
||||
types. It doesn't matter in which order this happens. Starting with the state
|
||||
of <i>M</i> after the first phase:
|
||||
</p>
|
||||
|
||||
<p>
|
||||
<code>A</code> → <code>int</code>,
|
||||
<code>B</code> → <code>[]C</code>,
|
||||
<code>C</code> → <code>*A</code>
|
||||
</p>
|
||||
|
||||
<p>
|
||||
Replace <code>A</code> on the right-hand side of → with <code>int</code>:
|
||||
</p>
|
||||
|
||||
<p>
|
||||
<code>A</code> → <code>int</code>,
|
||||
<code>B</code> → <code>[]C</code>,
|
||||
<code>C</code> → <code>*int</code>
|
||||
</p>
|
||||
|
||||
<p>
|
||||
Replace <code>C</code> on the right-hand side of → with <code>*int</code>:
|
||||
</p>
|
||||
|
||||
<p>
|
||||
<code>A</code> → <code>int</code>,
|
||||
<code>B</code> → <code>[]*int</code>,
|
||||
<code>C</code> → <code>*int</code>
|
||||
</p>
|
||||
|
||||
<p>
|
||||
At this point no further substitution is possible and the map is full.
|
||||
Therefore, <code>M</code> represents the final map of type parameters
|
||||
to type arguments for the given type parameter list.
|
||||
</p>
|
||||
|
||||
<h3 id="Operators">Operators</h3>
|
||||
|
||||
<p>
|
||||
|
|
|
|||
Loading…
Reference in New Issue