mirror of https://github.com/golang/go.git
internal/testmath: add two-sample Welch's t-test for performance tests
This CL copies code from github.com/aclements/go-moremath/stats and github.com/aclements/go-moremath/mathx for Welch's t-test. Several existing tests in the Go repository check performance and scalability, and this import is part of a move toward a more rigorous measurement of both. Note that the copied code is already licensed to Go Authors, so there's no need to worry about additional licensing considerations. For #32986. Change-Id: I058630fab7216d1a589bb182b69fa2231e6f5475 Reviewed-on: https://go-review.googlesource.com/c/go/+/411395 Reviewed-by: Michael Pratt <mpratt@google.com>
This commit is contained in:
parent
24b9039149
commit
6130461149
|
|
@ -543,7 +543,10 @@ var depsRules = `
|
||||||
internal/fuzz, internal/testlog, runtime/pprof, regexp
|
internal/fuzz, internal/testlog, runtime/pprof, regexp
|
||||||
< testing/internal/testdeps;
|
< testing/internal/testdeps;
|
||||||
|
|
||||||
OS, flag, testing, internal/cfg
|
MATH, errors, testing
|
||||||
|
< internal/testmath;
|
||||||
|
|
||||||
|
OS, flag, testing, internal/cfg, internal/testmath
|
||||||
< internal/testenv;
|
< internal/testenv;
|
||||||
|
|
||||||
OS, encoding/base64
|
OS, encoding/base64
|
||||||
|
|
|
||||||
|
|
@ -0,0 +1,213 @@
|
||||||
|
// Copyright 2022 The Go Authors. All rights reserved.
|
||||||
|
// Use of this source code is governed by a BSD-style
|
||||||
|
// license that can be found in the LICENSE file.
|
||||||
|
|
||||||
|
package testmath
|
||||||
|
|
||||||
|
import (
|
||||||
|
"errors"
|
||||||
|
"math"
|
||||||
|
)
|
||||||
|
|
||||||
|
// A TTestSample is a sample that can be used for a one or two sample
|
||||||
|
// t-test.
|
||||||
|
type TTestSample interface {
|
||||||
|
Weight() float64
|
||||||
|
Mean() float64
|
||||||
|
Variance() float64
|
||||||
|
}
|
||||||
|
|
||||||
|
var (
|
||||||
|
ErrSampleSize = errors.New("sample is too small")
|
||||||
|
ErrZeroVariance = errors.New("sample has zero variance")
|
||||||
|
ErrMismatchedSamples = errors.New("samples have different lengths")
|
||||||
|
)
|
||||||
|
|
||||||
|
// TwoSampleWelchTTest performs a two-sample (unpaired) Welch's t-test
|
||||||
|
// on samples x1 and x2. This t-test does not assume the distributions
|
||||||
|
// have equal variance.
|
||||||
|
func TwoSampleWelchTTest(x1, x2 TTestSample, alt LocationHypothesis) (*TTestResult, error) {
|
||||||
|
n1, n2 := x1.Weight(), x2.Weight()
|
||||||
|
if n1 <= 1 || n2 <= 1 {
|
||||||
|
// TODO: Can we still do this with n == 1?
|
||||||
|
return nil, ErrSampleSize
|
||||||
|
}
|
||||||
|
v1, v2 := x1.Variance(), x2.Variance()
|
||||||
|
if v1 == 0 && v2 == 0 {
|
||||||
|
return nil, ErrZeroVariance
|
||||||
|
}
|
||||||
|
|
||||||
|
dof := math.Pow(v1/n1+v2/n2, 2) /
|
||||||
|
(math.Pow(v1/n1, 2)/(n1-1) + math.Pow(v2/n2, 2)/(n2-1))
|
||||||
|
s := math.Sqrt(v1/n1 + v2/n2)
|
||||||
|
t := (x1.Mean() - x2.Mean()) / s
|
||||||
|
return newTTestResult(int(n1), int(n2), t, dof, alt), nil
|
||||||
|
}
|
||||||
|
|
||||||
|
// A TTestResult is the result of a t-test.
|
||||||
|
type TTestResult struct {
|
||||||
|
// N1 and N2 are the sizes of the input samples. For a
|
||||||
|
// one-sample t-test, N2 is 0.
|
||||||
|
N1, N2 int
|
||||||
|
|
||||||
|
// T is the value of the t-statistic for this t-test.
|
||||||
|
T float64
|
||||||
|
|
||||||
|
// DoF is the degrees of freedom for this t-test.
|
||||||
|
DoF float64
|
||||||
|
|
||||||
|
// AltHypothesis specifies the alternative hypothesis tested
|
||||||
|
// by this test against the null hypothesis that there is no
|
||||||
|
// difference in the means of the samples.
|
||||||
|
AltHypothesis LocationHypothesis
|
||||||
|
|
||||||
|
// P is p-value for this t-test for the given null hypothesis.
|
||||||
|
P float64
|
||||||
|
}
|
||||||
|
|
||||||
|
func newTTestResult(n1, n2 int, t, dof float64, alt LocationHypothesis) *TTestResult {
|
||||||
|
dist := TDist{dof}
|
||||||
|
var p float64
|
||||||
|
switch alt {
|
||||||
|
case LocationDiffers:
|
||||||
|
p = 2 * (1 - dist.CDF(math.Abs(t)))
|
||||||
|
case LocationLess:
|
||||||
|
p = dist.CDF(t)
|
||||||
|
case LocationGreater:
|
||||||
|
p = 1 - dist.CDF(t)
|
||||||
|
}
|
||||||
|
return &TTestResult{N1: n1, N2: n2, T: t, DoF: dof, AltHypothesis: alt, P: p}
|
||||||
|
}
|
||||||
|
|
||||||
|
// A LocationHypothesis specifies the alternative hypothesis of a
|
||||||
|
// location test such as a t-test or a Mann-Whitney U-test. The
|
||||||
|
// default (zero) value is to test against the alternative hypothesis
|
||||||
|
// that they differ.
|
||||||
|
type LocationHypothesis int
|
||||||
|
|
||||||
|
const (
|
||||||
|
// LocationLess specifies the alternative hypothesis that the
|
||||||
|
// location of the first sample is less than the second. This
|
||||||
|
// is a one-tailed test.
|
||||||
|
LocationLess LocationHypothesis = -1
|
||||||
|
|
||||||
|
// LocationDiffers specifies the alternative hypothesis that
|
||||||
|
// the locations of the two samples are not equal. This is a
|
||||||
|
// two-tailed test.
|
||||||
|
LocationDiffers LocationHypothesis = 0
|
||||||
|
|
||||||
|
// LocationGreater specifies the alternative hypothesis that
|
||||||
|
// the location of the first sample is greater than the
|
||||||
|
// second. This is a one-tailed test.
|
||||||
|
LocationGreater LocationHypothesis = 1
|
||||||
|
)
|
||||||
|
|
||||||
|
// A TDist is a Student's t-distribution with V degrees of freedom.
|
||||||
|
type TDist struct {
|
||||||
|
V float64
|
||||||
|
}
|
||||||
|
|
||||||
|
// PDF returns the value at x of the probability distribution function for the
|
||||||
|
// distribution.
|
||||||
|
func (t TDist) PDF(x float64) float64 {
|
||||||
|
return math.Exp(lgamma((t.V+1)/2)-lgamma(t.V/2)) /
|
||||||
|
math.Sqrt(t.V*math.Pi) * math.Pow(1+(x*x)/t.V, -(t.V+1)/2)
|
||||||
|
}
|
||||||
|
|
||||||
|
// CDF returns the value at x of the cumulative distribution function for the
|
||||||
|
// distribution.
|
||||||
|
func (t TDist) CDF(x float64) float64 {
|
||||||
|
if x == 0 {
|
||||||
|
return 0.5
|
||||||
|
} else if x > 0 {
|
||||||
|
return 1 - 0.5*betaInc(t.V/(t.V+x*x), t.V/2, 0.5)
|
||||||
|
} else if x < 0 {
|
||||||
|
return 1 - t.CDF(-x)
|
||||||
|
} else {
|
||||||
|
return math.NaN()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
func (t TDist) Bounds() (float64, float64) {
|
||||||
|
return -4, 4
|
||||||
|
}
|
||||||
|
|
||||||
|
func lgamma(x float64) float64 {
|
||||||
|
y, _ := math.Lgamma(x)
|
||||||
|
return y
|
||||||
|
}
|
||||||
|
|
||||||
|
// betaInc returns the value of the regularized incomplete beta
|
||||||
|
// function Iₓ(a, b) = 1 / B(a, b) * ∫₀ˣ tᵃ⁻¹ (1-t)ᵇ⁻¹ dt.
|
||||||
|
//
|
||||||
|
// This is not to be confused with the "incomplete beta function",
|
||||||
|
// which can be computed as BetaInc(x, a, b)*Beta(a, b).
|
||||||
|
//
|
||||||
|
// If x < 0 or x > 1, returns NaN.
|
||||||
|
func betaInc(x, a, b float64) float64 {
|
||||||
|
// Based on Numerical Recipes in C, section 6.4. This uses the
|
||||||
|
// continued fraction definition of I:
|
||||||
|
//
|
||||||
|
// (xᵃ*(1-x)ᵇ)/(a*B(a,b)) * (1/(1+(d₁/(1+(d₂/(1+...))))))
|
||||||
|
//
|
||||||
|
// where B(a,b) is the beta function and
|
||||||
|
//
|
||||||
|
// d_{2m+1} = -(a+m)(a+b+m)x/((a+2m)(a+2m+1))
|
||||||
|
// d_{2m} = m(b-m)x/((a+2m-1)(a+2m))
|
||||||
|
if x < 0 || x > 1 {
|
||||||
|
return math.NaN()
|
||||||
|
}
|
||||||
|
bt := 0.0
|
||||||
|
if 0 < x && x < 1 {
|
||||||
|
// Compute the coefficient before the continued
|
||||||
|
// fraction.
|
||||||
|
bt = math.Exp(lgamma(a+b) - lgamma(a) - lgamma(b) +
|
||||||
|
a*math.Log(x) + b*math.Log(1-x))
|
||||||
|
}
|
||||||
|
if x < (a+1)/(a+b+2) {
|
||||||
|
// Compute continued fraction directly.
|
||||||
|
return bt * betacf(x, a, b) / a
|
||||||
|
} else {
|
||||||
|
// Compute continued fraction after symmetry transform.
|
||||||
|
return 1 - bt*betacf(1-x, b, a)/b
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// betacf is the continued fraction component of the regularized
|
||||||
|
// incomplete beta function Iₓ(a, b).
|
||||||
|
func betacf(x, a, b float64) float64 {
|
||||||
|
const maxIterations = 200
|
||||||
|
const epsilon = 3e-14
|
||||||
|
|
||||||
|
raiseZero := func(z float64) float64 {
|
||||||
|
if math.Abs(z) < math.SmallestNonzeroFloat64 {
|
||||||
|
return math.SmallestNonzeroFloat64
|
||||||
|
}
|
||||||
|
return z
|
||||||
|
}
|
||||||
|
|
||||||
|
c := 1.0
|
||||||
|
d := 1 / raiseZero(1-(a+b)*x/(a+1))
|
||||||
|
h := d
|
||||||
|
for m := 1; m <= maxIterations; m++ {
|
||||||
|
mf := float64(m)
|
||||||
|
|
||||||
|
// Even step of the recurrence.
|
||||||
|
numer := mf * (b - mf) * x / ((a + 2*mf - 1) * (a + 2*mf))
|
||||||
|
d = 1 / raiseZero(1+numer*d)
|
||||||
|
c = raiseZero(1 + numer/c)
|
||||||
|
h *= d * c
|
||||||
|
|
||||||
|
// Odd step of the recurrence.
|
||||||
|
numer = -(a + mf) * (a + b + mf) * x / ((a + 2*mf) * (a + 2*mf + 1))
|
||||||
|
d = 1 / raiseZero(1+numer*d)
|
||||||
|
c = raiseZero(1 + numer/c)
|
||||||
|
hfac := d * c
|
||||||
|
h *= hfac
|
||||||
|
|
||||||
|
if math.Abs(hfac-1) < epsilon {
|
||||||
|
return h
|
||||||
|
}
|
||||||
|
}
|
||||||
|
panic("betainc: a or b too big; failed to converge")
|
||||||
|
}
|
||||||
Loading…
Reference in New Issue