mirror of https://github.com/golang/go.git
crypto/rsa: use Div instead of GCD for trial division
Div is way faster. We could actually test a lot more primes and still
gain performance despite the diminishing returns, but necessarily it
would have marginal impact overall.
fips140: off
goos: linux
goarch: amd64
pkg: crypto/rsa
cpu: AMD Ryzen 7 PRO 8700GE w/ Radeon 780M Graphics
│ e325b41ad1 │ 0f611af2e1 │
│ sec/op │ sec/op vs base │
GenerateKey/2048-16 124.19m ± 0% 39.93m ± 0% -67.85% (p=0.000 n=20)
Surprisingly, the performance gain is similar on ARM64, which doesn't
have intrinsified math.Div.
fips140: off
goos: darwin
goarch: arm64
pkg: crypto/rsa
cpu: Apple M2
│ e325b41ad1 │ 6276161a7f │
│ sec/op │ sec/op vs base │
GenerateKey/2048-8 136.49m ± 0% 47.97m ± 1% -64.86% (p=0.000 n=20)
Change-Id: I6a6a46560331198312bd09c1cbe4d2b3c370c552
Reviewed-on: https://go-review.googlesource.com/c/go/+/639955
Reviewed-by: Junyang Shao <shaojunyang@google.com>
Auto-Submit: Filippo Valsorda <filippo@golang.org>
Reviewed-by: Russ Cox <rsc@golang.org>
LUCI-TryBot-Result: Go LUCI <golang-scoped@luci-project-accounts.iam.gserviceaccount.com>
Reviewed-by: Daniel McCarney <daniel@binaryparadox.net>
This commit is contained in:
parent
4b1ac7bbfe
commit
19d0b3e81f
|
|
@ -223,14 +223,11 @@ func isPrime(w []byte) bool {
|
|||
return false
|
||||
}
|
||||
|
||||
primes, err := bigmod.NewNat().SetBytes(productOfPrimes, mr.w)
|
||||
// If w is too small for productOfPrimes, key generation is
|
||||
// going to be fast enough anyway.
|
||||
if err == nil {
|
||||
_, hasInverse := primes.InverseVarTime(primes, mr.w)
|
||||
if !hasInverse {
|
||||
// productOfPrimes doesn't have an inverse mod w,
|
||||
// so w is divisible by at least one of the primes.
|
||||
// Before Miller-Rabin, rule out most composites with trial divisions.
|
||||
for i := 0; i < len(primes); i += 3 {
|
||||
p1, p2, p3 := primes[i], primes[i+1], primes[i+2]
|
||||
r := mr.w.Nat().DivShortVarTime(p1 * p2 * p3)
|
||||
if r%p1 == 0 || r%p2 == 0 || r%p3 == 0 {
|
||||
return false
|
||||
}
|
||||
}
|
||||
|
|
@ -289,20 +286,34 @@ func isPrime(w []byte) bool {
|
|||
}
|
||||
}
|
||||
|
||||
// productOfPrimes is the product of the first 74 primes higher than 2.
|
||||
// primes are the first prime numbers (except 2), such that the product of any
|
||||
// three primes fits in a uint32.
|
||||
//
|
||||
// The number of primes was selected to be the highest such that the product fit
|
||||
// in 512 bits, so to be usable for 1024 bit RSA keys.
|
||||
//
|
||||
// Higher values cause fewer Miller-Rabin tests of composites (nothing can help
|
||||
// with the final test on the actual prime) but make InverseVarTime take longer.
|
||||
// There are diminishing returns: including the 75th prime would increase the
|
||||
// success rate of trial division by 0.05%.
|
||||
var productOfPrimes = []byte{
|
||||
0x10, 0x6a, 0xa9, 0xfb, 0x76, 0x46, 0xfa, 0x6e, 0xb0, 0x81, 0x3c, 0x28, 0xc5, 0xd5, 0xf0, 0x9f,
|
||||
0x07, 0x7e, 0xc3, 0xba, 0x23, 0x8b, 0xfb, 0x99, 0xc1, 0xb6, 0x31, 0xa2, 0x03, 0xe8, 0x11, 0x87,
|
||||
0x23, 0x3d, 0xb1, 0x17, 0xcb, 0xc3, 0x84, 0x05, 0x6e, 0xf0, 0x46, 0x59, 0xa4, 0xa1, 0x1d, 0xe4,
|
||||
0x9f, 0x7e, 0xcb, 0x29, 0xba, 0xda, 0x8f, 0x98, 0x0d, 0xec, 0xec, 0xe9, 0x2e, 0x30, 0xc4, 0x8f,
|
||||
// More primes cause fewer Miller-Rabin tests of composites (nothing can help
|
||||
// with the final test on the actual prime) but have diminishing returns: these
|
||||
// 255 primes catch 84.9% of composites, the next 255 would catch 1.5% more.
|
||||
// Adding primes can still be marginally useful since they only compete with the
|
||||
// (much more expensive) first Miller-Rabin round for candidates that were not
|
||||
// rejected by the previous primes.
|
||||
var primes = []uint{
|
||||
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53,
|
||||
59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127,
|
||||
131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199,
|
||||
211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283,
|
||||
293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383,
|
||||
389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467,
|
||||
479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577,
|
||||
587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661,
|
||||
673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769,
|
||||
773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877,
|
||||
881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983,
|
||||
991, 997, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069,
|
||||
1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181,
|
||||
1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283,
|
||||
1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399,
|
||||
1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487,
|
||||
1489, 1493, 1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583,
|
||||
1597, 1601, 1607, 1609, 1613, 1619,
|
||||
}
|
||||
|
||||
type millerRabin struct {
|
||||
|
|
|
|||
Loading…
Reference in New Issue