mirror of https://github.com/XEphem/XEphem.git
511 lines
18 KiB
C
511 lines
18 KiB
C
/* saturn moon info */
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <errno.h>
|
|
#include <math.h>
|
|
|
|
#include "astro.h"
|
|
#include "bdl.h"
|
|
|
|
static int use_bdl (double JD, char *dir, MoonData md[S_NMOONS]);
|
|
static void bruton_saturn (Obj *sop, double JD, MoonData md[S_NMOONS]);
|
|
static void moonradec (double satsize, MoonData md[S_NMOONS]);
|
|
static void moonSVis (Obj *eop, Obj *sop, MoonData md[S_NMOONS]);
|
|
static void moonEVis (MoonData md[S_NMOONS]);
|
|
static void moonPShad (Obj *eop, Obj *sop, MoonData md[S_NMOONS]);
|
|
static void moonTrans (MoonData md[S_NMOONS]);
|
|
|
|
/* moon table and a few other goodies and when it was last computed */
|
|
static double mdmjd = -123456;
|
|
static MoonData smd[S_NMOONS] = {
|
|
{"Saturn", NULL},
|
|
{"Mimas", "I"},
|
|
{"Enceladus","II"},
|
|
{"Tethys", "III"},
|
|
{"Dione", "IV"},
|
|
{"Rhea", "V"},
|
|
{"Titan", "VI"},
|
|
{"Hyperion","VII"},
|
|
{"Iapetus", "VIII"},
|
|
};
|
|
static double sizemjd;
|
|
static double etiltmjd;
|
|
static double stiltmjd;
|
|
|
|
/* These values are from the Explanatory Supplement.
|
|
* Precession degrades them gradually over time.
|
|
*/
|
|
#define POLE_RA degrad(40.58) /* RA of Saturn's north pole */
|
|
#define POLE_DEC degrad(83.54) /* Dec of Saturn's north pole */
|
|
|
|
|
|
/* get saturn info in md[0], moon info in md[1..S_NMOONS-1].
|
|
* if !dir always use bruton model.
|
|
* if !sop caller just wants md[] for names
|
|
* N.B. we assume eop and sop are updated.
|
|
*/
|
|
void
|
|
saturn_data (
|
|
double Mjd, /* mjd */
|
|
char dir[], /* dir in which to look for helper files */
|
|
Obj *eop, /* earth == Sun */
|
|
Obj *sop, /* saturn */
|
|
double *sizep, /* saturn's angular diam, rads */
|
|
double *etiltp, double *stiltp, /* earth and sun tilts -- +S */
|
|
double *polera, double *poledec,/* pole location */
|
|
MoonData md[S_NMOONS]) /* return info */
|
|
{
|
|
double JD;
|
|
|
|
/* always copy back at least for name */
|
|
memcpy (md, smd, sizeof(smd));
|
|
|
|
/* pole */
|
|
if (polera) *polera = POLE_RA;
|
|
if (poledec) *poledec = POLE_DEC;
|
|
|
|
/* nothing else if repeat call or just want names */
|
|
if (Mjd == mdmjd || !sop) {
|
|
if (sop) {
|
|
*sizep = sizemjd;
|
|
*etiltp = etiltmjd;
|
|
*stiltp = stiltmjd;
|
|
}
|
|
return;
|
|
}
|
|
JD = Mjd + MJD0;
|
|
|
|
/* planet in [0] */
|
|
md[0].ra = sop->s_ra;
|
|
md[0].dec = sop->s_dec;
|
|
md[0].mag = get_mag(sop);
|
|
md[0].x = 0;
|
|
md[0].y = 0;
|
|
md[0].z = 0;
|
|
md[0].evis = 1;
|
|
md[0].svis = 1;
|
|
|
|
/* size is straight from sop */
|
|
*sizep = degrad(sop->s_size/3600.0);
|
|
|
|
/* Visual Magnitude of the Satellites */
|
|
|
|
md[1].mag = 13; md[2].mag = 11.8; md[3].mag = 10.3; md[4].mag = 10.2;
|
|
md[5].mag = 9.8; md[6].mag = 8.4; md[7].mag = 14.3; md[8].mag = 11.2;
|
|
|
|
/* get tilts from sky and tel code */
|
|
satrings (sop->s_hlat, sop->s_hlong, sop->s_sdist, eop->s_hlong,
|
|
eop->s_edist, JD, etiltp, stiltp);
|
|
|
|
/* get moon x,y,z from BDL if possible, else Bruton's model */
|
|
if (!dir || use_bdl (JD, dir, md) < 0)
|
|
bruton_saturn (sop, JD, md);
|
|
|
|
/* set visibilities */
|
|
moonSVis (eop, sop, md);
|
|
moonPShad (eop, sop, md);
|
|
moonEVis (md);
|
|
moonTrans (md);
|
|
|
|
/* fill in moon ra and dec */
|
|
moonradec (*sizep, md);
|
|
|
|
/* save */
|
|
mdmjd = Mjd;
|
|
etiltmjd = *etiltp;
|
|
stiltmjd = *stiltp;
|
|
sizemjd = *sizep;
|
|
memcpy (smd, md, sizeof(smd));
|
|
}
|
|
|
|
/* hunt for BDL file in dir[] and use if possible.
|
|
* return 0 if ok, else -1
|
|
*/
|
|
static int
|
|
use_bdl (
|
|
double JD, /* julian date */
|
|
char dir[], /* directory */
|
|
MoonData md[S_NMOONS]) /* fill md[1..NM-1].x/y/z for each moon */
|
|
{
|
|
#define SATRAU .0004014253 /* saturn radius, AU */
|
|
double x[S_NMOONS], y[S_NMOONS], z[S_NMOONS];
|
|
char buf[1024];
|
|
FILE *fp;
|
|
char *fn;
|
|
int i;
|
|
|
|
/* check ranges and appropriate data file */
|
|
if (JD < 2451179.50000) /* Jan 1 1999 UTC */
|
|
return (-1);
|
|
if (JD < 2455562.5) /* Jan 1 2011 UTC */
|
|
fn = "saturne.9910";
|
|
else if (JD < 2459215.5) /* Jan 1 2021 UTC */
|
|
fn = "saturne.1020";
|
|
else if (JD < 2466520.5) /* Jan 1 2041 UTC */
|
|
fn = "saturne.2040";
|
|
else
|
|
return (-1);
|
|
|
|
/* open */
|
|
(void) sprintf (buf, "%s/%s", dir, fn);
|
|
fp = fopen (buf, "r");
|
|
if (!fp) {
|
|
fprintf (stderr, "%s: %s\n", fn, strerror(errno));
|
|
return (-1);
|
|
}
|
|
|
|
/* use it */
|
|
if ((i = read_bdl (fp, JD, x, y, z, buf)) < 0) {
|
|
fprintf (stderr, "%s: %s\n", fn, buf);
|
|
fclose (fp);
|
|
return (-1);
|
|
}
|
|
if (i != S_NMOONS-1) {
|
|
fprintf (stderr, "%s: BDL says %d moons, code expects %d", fn,
|
|
i, S_NMOONS-1);
|
|
fclose (fp);
|
|
return (-1);
|
|
}
|
|
|
|
/* copy into md[1..NM-1] with our scale and sign conventions */
|
|
for (i = 1; i < S_NMOONS; i++) {
|
|
md[i].x = x[i-1]/SATRAU; /* we want sat radii +E */
|
|
md[i].y = -y[i-1]/SATRAU; /* we want sat radii +S */
|
|
md[i].z = -z[i-1]/SATRAU; /* we want sat radii +front */
|
|
}
|
|
|
|
/* ok */
|
|
fclose (fp);
|
|
return (0);
|
|
}
|
|
|
|
/* */
|
|
/* SS2TXT.BAS Dan Bruton, astro@tamu.edu */
|
|
/* */
|
|
/* This is a text version of SATSAT2.BAS. It is smaller, */
|
|
/* making it easier to convert other languages (250 lines */
|
|
/* compared to 850 lines). */
|
|
/* */
|
|
/* This BASIC program computes and displays the locations */
|
|
/* of Saturn's Satellites for a given date and time. See */
|
|
/* "Practical Astronomy with your Calculator" by Peter */
|
|
/* Duffett-Smith and the Astronomical Almanac for explanations */
|
|
/* of some of the calculations here. The code is included so */
|
|
/* that users can make changes or convert to other languages. */
|
|
/* This code was made using QBASIC (comes with DOS 5.0). */
|
|
/* */
|
|
/* ECD: merged with Sky and Tel, below, for better earth and sun ring tilt */
|
|
/* */
|
|
|
|
/* ECD: BASICeze */
|
|
#define FOR for
|
|
#define IF if
|
|
#define ELSE else
|
|
#define COS cos
|
|
#define SIN sin
|
|
#define TAN tan
|
|
#define ATN atan
|
|
#define ABS fabs
|
|
#define SQR sqrt
|
|
|
|
/* find saturn moon data from Bruton's model */
|
|
/* this originally computed +X:East +Y:North +Z:behind in [1..8] indeces.
|
|
* and +tilt:front south, rads
|
|
* then we adjust things in md[].x/y/z/mag to fit into our MoonData format.
|
|
*/
|
|
static void
|
|
bruton_saturn (
|
|
Obj *sop, /* saturn */
|
|
double JD, /* julian date */
|
|
MoonData md[S_NMOONS]) /* fill md[1..NM-1].x/y/z for each moon */
|
|
{
|
|
/* ECD: code does not use [0].
|
|
* ECD and why 11 here? seems like 9 would do
|
|
*/
|
|
double SMA[11], U[11], U0[11], PD[11];
|
|
double X[S_NMOONS], Y[S_NMOONS], Z[S_NMOONS];
|
|
|
|
double P,TP,TE,EP,EE,RE0,RP0,RS;
|
|
double JDE,LPE,LPP,LEE,LEP;
|
|
double NN,ME,MP,VE,VP;
|
|
double LE,LP,RE,RP,DT,II,F,F1;
|
|
double RA,DECL;
|
|
double TVA,PVA,TVC,PVC,DOT1,INC,TVB,PVB,DOT2,INCI;
|
|
double TRIP,GAM,TEMPX,TEMPY,TEMPZ;
|
|
int I;
|
|
|
|
/* saturn */
|
|
RA = sop->s_ra;
|
|
DECL = sop->s_dec;
|
|
|
|
/* ******************************************************************** */
|
|
/* * * */
|
|
/* * Constants * */
|
|
/* * * */
|
|
/* ******************************************************************** */
|
|
P = PI / 180;
|
|
/* Orbital Rate of Saturn in Radians per Days */
|
|
TP = 2 * PI / (29.45771 * 365.2422);
|
|
/* Orbital Rate of Earth in Radians per Day */
|
|
TE = 2 * PI / (1.00004 * 365.2422);
|
|
/* Eccentricity of Saturn's Orbit */
|
|
EP = .0556155;
|
|
/* Eccentricity of Earth's Orbit */
|
|
EE = .016718;
|
|
/* Semimajor axis of Earth's and Saturn's orbit in Astronomical Units */
|
|
RE0 = 1; RP0 = 9.554747;
|
|
/* Semimajor Axis of the Satellites' Orbit in Kilometers */
|
|
SMA[1] = 185600; SMA[2] = 238100; SMA[3] = 294700; SMA[4] = 377500;
|
|
SMA[5] = 527200; SMA[6] = 1221600; SMA[7] = 1483000; SMA[8] = 3560100;
|
|
/* Eccentricity of Satellites' Orbit [Program uses 0] */
|
|
/* Synodic Orbital Period of Moons in Days */
|
|
PD[1] = .9425049;
|
|
PD[2] = 1.3703731;
|
|
PD[3] = 1.8880926;
|
|
PD[4] = 2.7375218;
|
|
PD[5] = 4.5191631;
|
|
PD[6] = 15.9669028;
|
|
PD[7] = 21.3174647;
|
|
PD[8] = 79.9190206; /* personal mail 1/14/95 */
|
|
RS = 60330; /* Radius of planet in kilometers */
|
|
|
|
/* ******************************************************************** */
|
|
/* * * */
|
|
/* * Epoch Information * */
|
|
/* * * */
|
|
/* ******************************************************************** */
|
|
JDE = 2444238.5; /* Epoch Jan 0.0 1980 = December 31,1979 0:0:0 UT */
|
|
LPE = 165.322242 * P; /* Longitude of Saturn at Epoch */
|
|
LPP = 92.6653974 * P; /* Longitude of Saturn`s Perihelion */
|
|
LEE = 98.83354 * P; /* Longitude of Earth at Epoch */
|
|
LEP = 102.596403 * P; /* Longitude of Earth's Perihelion */
|
|
/* U0[I] = Angle from inferior geocentric conjuction */
|
|
/* measured westward along the orbit at epoch */
|
|
U0[1] = 18.2919 * P;
|
|
U0[2] = 174.2135 * P;
|
|
U0[3] = 172.8546 * P;
|
|
U0[4] = 76.8438 * P;
|
|
U0[5] = 37.2555 * P;
|
|
U0[6] = 57.7005 * P;
|
|
U0[7] = 266.6977 * P;
|
|
U0[8] = 195.3513 * P; /* from personal mail 1/14/1995 */
|
|
|
|
/* ******************************************************************** */
|
|
/* * * */
|
|
/* * Orbit Calculations * */
|
|
/* * * */
|
|
/* ******************************************************************** */
|
|
/* ****************** FIND MOON ORBITAL ANGLES ************************ */
|
|
NN = JD - JDE; /* NN = Number of days since epoch */
|
|
ME = ((TE * NN) + LEE - LEP); /* Mean Anomoly of Earth */
|
|
MP = ((TP * NN) + LPE - LPP); /* Mean Anomoly of Saturn */
|
|
VE = ME; VP = MP; /* True Anomolies - Solve Kepler's Equation */
|
|
FOR (I = 1; I <= 3; I++) {
|
|
VE = VE - (VE - (EE * SIN(VE)) - ME) / (1 - (EE * COS(VE)));
|
|
VP = VP - (VP - (EP * SIN(VP)) - MP) / (1 - (EP * COS(VP)));
|
|
}
|
|
VE = 2 * ATN(SQR((1 + EE) / (1 - EE)) * TAN(VE / 2));
|
|
IF (VE < 0) VE = (2 * PI) + VE;
|
|
VP = 2 * ATN(SQR((1 + EP) / (1 - EP)) * TAN(VP / 2));
|
|
IF (VP < 0) VP = (2 * PI) + VP;
|
|
/* Heliocentric Longitudes of Earth and Saturn */
|
|
LE = VE + LEP; IF (LE > (2 * PI)) LE = LE - (2 * PI);
|
|
LP = VP + LPP; IF (LP > (2 * PI)) LP = LP - (2 * PI);
|
|
/* Distances of Earth and Saturn from the Sun in AU's */
|
|
RE = RE0 * (1 - EE * EE) / (1 + EE * COS(VE));
|
|
RP = RP0 * (1 - EP * EP) / (1 + EP * COS(VP));
|
|
/* DT = Distance from Saturn to Earth in AU's - Law of Cosines */
|
|
DT = SQR((RE * RE) + (RP * RP) - (2 * RE * RP * COS(LE - LP)));
|
|
/* II = Angle between Earth and Sun as seen from Saturn */
|
|
II = RE * SIN(LE - LP) / DT;
|
|
II = ATN(II / SQR(1 - II * II)); /* ArcSIN and Law of Sines */
|
|
/* F = NN - (Light Time to Earth in days) */
|
|
F = NN - (DT / 173.83);
|
|
F1 = II + MP - VP;
|
|
/* U(I) = Angle from inferior geocentric conjuction measured westward */
|
|
FOR (I = 1; I < S_NMOONS; I++) {
|
|
U[I] = U0[I] + (F * 2 * PI / PD[I]) + F1;
|
|
U[I] = ((U[I] / (2 * PI)) - (int)(U[I] / (2 * PI))) * 2 * PI;
|
|
|
|
}
|
|
|
|
/* **************** FIND INCLINATION OF RINGS ************************* */
|
|
/* Use dot product of Earth-Saturn vector and Saturn's rotation axis */
|
|
TVA = (90 - 83.51) * P; /* Theta coordinate of Saturn's axis */
|
|
PVA = 40.27 * P; /* Phi coordinate of Saturn's axis */
|
|
TVC = (PI / 2) - DECL;
|
|
PVC = RA;
|
|
DOT1 = SIN(TVA) * COS(PVA) * SIN(TVC) * COS(PVC);
|
|
DOT1 = DOT1 + SIN(TVA) * SIN(PVA) * SIN(TVC) * SIN(PVC);
|
|
DOT1 = DOT1 + COS(TVA) * COS(TVC);
|
|
INC = ATN(SQR(1 - DOT1 * DOT1) / DOT1); /* ArcCOS */
|
|
IF (INC > 0) INC = (PI / 2) - INC; ELSE INC = -(PI / 2) - INC;
|
|
|
|
/* ************* FIND INCLINATION OF IAPETUS' ORBIT ******************* */
|
|
/* Use dot product of Earth-Saturn vector and Iapetus' orbit axis */
|
|
/* Vector B */
|
|
TVB = (90 - 75.6) * P; /* Theta coordinate of Iapetus' orbit axis (estimate) */
|
|
PVB = 21.34 * 2 * PI / 24; /* Phi coordinate of Iapetus' orbit axis (estimate) */
|
|
DOT2 = SIN(TVB) * COS(PVB) * SIN(TVC) * COS(PVC);
|
|
DOT2 = DOT2 + SIN(TVB) * SIN(PVB) * SIN(TVC) * SIN(PVC);
|
|
DOT2 = DOT2 + COS(TVB) * COS(TVC);
|
|
INCI = ATN(SQR(1 - DOT2 * DOT2) / DOT2); /* ArcCOS */
|
|
IF (INCI > 0) INCI = (PI / 2) - INCI; ELSE INCI = -(PI / 2) - INCI;
|
|
|
|
/* ************* FIND ROTATION ANGLE OF IAPETUS' ORBIT **************** */
|
|
/* Use inclination of Iapetus' orbit with respect to ring plane */
|
|
/* Triple Product */
|
|
TRIP = SIN(TVC) * COS(PVC) * SIN(TVA) * SIN(PVA) * COS(TVB);
|
|
TRIP = TRIP - SIN(TVC) * COS(PVC) * SIN(TVB) * SIN(PVB) * COS(TVA);
|
|
TRIP = TRIP + SIN(TVC) * SIN(PVC) * SIN(TVB) * COS(PVB) * COS(TVA);
|
|
TRIP = TRIP - SIN(TVC) * SIN(PVC) * SIN(TVA) * COS(PVA) * COS(TVB);
|
|
TRIP = TRIP + COS(TVC) * SIN(TVA) * COS(PVA) * SIN(TVB) * SIN(PVB);
|
|
TRIP = TRIP - COS(TVC) * SIN(TVB) * COS(PVB) * SIN(TVA) * SIN(PVA);
|
|
GAM = -1 * ATN(TRIP / SQR(1 - TRIP * TRIP)); /* ArcSIN */
|
|
|
|
/* ******************************************************************** */
|
|
/* * * */
|
|
/* * Compute Moon Positions * */
|
|
/* * * */
|
|
/* ******************************************************************** */
|
|
FOR (I = 1; I < S_NMOONS - 1; I++) {
|
|
X[I] = -1 * SMA[I] * SIN(U[I]) / RS;
|
|
Z[I] = -1 * SMA[I] * COS(U[I]) / RS; /* ECD */
|
|
Y[I] = SMA[I] * COS(U[I]) * SIN(INC) / RS;
|
|
}
|
|
/* ************************* Iapetus' Orbit *************************** */
|
|
TEMPX = -1 * SMA[8] * SIN(U[8]) / RS;
|
|
TEMPZ = -1 * SMA[8] * COS(U[8]) / RS;
|
|
TEMPY = SMA[8] * COS(U[8]) * SIN(INCI) / RS;
|
|
X[8] = TEMPX * COS(GAM) + TEMPY * SIN(GAM); /* Rotation */
|
|
Z[8] = TEMPZ * COS(GAM) + TEMPY * SIN(GAM);
|
|
Y[8] = -1 * TEMPX * SIN(GAM) + TEMPY * COS(GAM);
|
|
|
|
#ifdef SHOWALL
|
|
/* ******************************************************************** */
|
|
/* * * */
|
|
/* * Show Results * */
|
|
/* * * */
|
|
/* ******************************************************************** */
|
|
printf (" Julian Date : %g\n", JD);
|
|
printf (" Right Ascension of Saturn : %g Hours\n", RA * 24 / (2 * PI));
|
|
printf (" Declination of Saturn : %g\n", DECL / P);
|
|
printf (" Ring Inclination as seen from Earth : %g\n", -1 * INC / P);
|
|
printf (" Heliocentric Longitude of Saturn : %g\n", LP / P);
|
|
printf (" Heliocentric Longitude of Earth : %g\n", LE / P);
|
|
printf (" Sun-Saturn-Earth Angle : %g\n", II / P);
|
|
printf (" Distance between Saturn and Earth : %g AU = %g million miles\n", DT, (DT * 93));
|
|
printf (" Light time from Saturn to Earth : %g minutes\n", DT * 8.28);
|
|
TEMP = 2 * ATN(TAN(165.6 * P / (2 * 3600)) / DT) * 3600 / P;
|
|
printf (" Angular Size of Saturn : %g arcsec\n", TEMP);
|
|
printf (" Major Angular Size of Saturn's Rings : %g arcsec\n", RS4 * TEMP / RS);
|
|
printf (" Minor Angular Size of Saturn's Rings : %g arcsec\n", ABS(RS4 * TEMP * SIN(INC) / RS));
|
|
#endif
|
|
|
|
/* copy into md[1..S_NMOONS-1] with our sign conventions */
|
|
for (I = 1; I < S_NMOONS; I++) {
|
|
md[I].x = X[I]; /* we want +E */
|
|
md[I].y = -Y[I]; /* we want +S */
|
|
md[I].z = -Z[I]; /* we want +front */
|
|
}
|
|
}
|
|
|
|
/* given saturn loc in md[0].ra/dec and size, and location of each moon in
|
|
* md[1..NM-1].x/y in sat radii, find ra/dec of each moon in md[1..NM-1].ra/dec.
|
|
*/
|
|
static void
|
|
moonradec (
|
|
double satsize, /* sat diameter, rads */
|
|
MoonData md[S_NMOONS]) /* fill in RA and Dec */
|
|
{
|
|
double satrad = satsize/2;
|
|
double satra = md[0].ra;
|
|
double satdec = md[0].dec;
|
|
int i;
|
|
|
|
for (i = 1; i < S_NMOONS; i++) {
|
|
double dra = satrad * md[i].x;
|
|
double ddec = satrad * md[i].y;
|
|
md[i].ra = satra + dra;
|
|
md[i].dec = satdec - ddec;
|
|
}
|
|
}
|
|
|
|
/* set svis according to whether moon is in sun light */
|
|
static void
|
|
moonSVis(
|
|
Obj *eop, /* earth == SUN */
|
|
Obj *sop, /* saturn */
|
|
MoonData md[S_NMOONS])
|
|
{
|
|
double esd = eop->s_edist;
|
|
double eod = sop->s_edist;
|
|
double sod = sop->s_sdist;
|
|
double soa = degrad(sop->s_elong);
|
|
double esa = asin(esd*sin(soa)/sod);
|
|
double h = sod*sop->s_hlat;
|
|
double nod = h*(1./eod - 1./sod);
|
|
double sca = cos(esa), ssa = sin(esa);
|
|
int i;
|
|
|
|
for (i = 1; i < S_NMOONS; i++) {
|
|
MoonData *mdp = &md[i];
|
|
double xp = sca*mdp->x + ssa*mdp->z;
|
|
double yp = mdp->y;
|
|
double zp = -ssa*mdp->x + sca*mdp->z;
|
|
double ca = cos(nod), sa = sin(nod);
|
|
double xpp = xp;
|
|
double ypp = ca*yp - sa*zp;
|
|
double zpp = sa*yp + ca*zp;
|
|
int outside = xpp*xpp + ypp*ypp > 1.0;
|
|
int infront = zpp > 0.0;
|
|
mdp->svis = outside || infront;
|
|
}
|
|
}
|
|
|
|
/* set evis according to whether moon is geometrically visible from earth */
|
|
static void
|
|
moonEVis (MoonData md[S_NMOONS])
|
|
{
|
|
int i;
|
|
|
|
for (i = 1; i < S_NMOONS; i++) {
|
|
MoonData *mdp = &md[i];
|
|
int outside = mdp->x*mdp->x + mdp->y*mdp->y > 1.0;
|
|
int infront = mdp->z > 0.0;
|
|
mdp->evis = outside || infront;
|
|
}
|
|
}
|
|
|
|
/* set pshad and sx,sy shadow info */
|
|
static void
|
|
moonPShad(
|
|
Obj *eop, /* earth == SUN */
|
|
Obj *sop, /* saturn */
|
|
MoonData md[S_NMOONS])
|
|
{
|
|
int i;
|
|
|
|
for (i = 1; i < S_NMOONS; i++) {
|
|
MoonData *mdp = &md[i];
|
|
mdp->pshad = !plshadow (sop, eop, POLE_RA, POLE_DEC, mdp->x,
|
|
mdp->y, mdp->z, &mdp->sx, &mdp->sy);
|
|
}
|
|
}
|
|
|
|
|
|
/* set whether moons are transiting */
|
|
static void
|
|
moonTrans (MoonData md[S_NMOONS])
|
|
{
|
|
int i;
|
|
|
|
for (i = 1; i < S_NMOONS; i++) {
|
|
MoonData *mdp = &md[i];
|
|
mdp->trans = mdp->z > 0 && mdp->x*mdp->x + mdp->y*mdp->y < 1;
|
|
}
|
|
}
|
|
|