XEphem/libastro/deltat.c

335 lines
9.6 KiB
C

/* DeltaT = Ephemeris Time - Universal Time
*
* Adapted 2011/4/14 from Stephen Moshier <moshier@world.std.com>,
* cosmetic changes only.
*
* Compile as follows to create stand-alone test program:
* cc -DTEST_MAIN deltat.c libastro.a
*
* Tabulated values of deltaT, in hundredths of a second, are
* from The Astronomical Almanac and current IERS reports.
* A table of values for the pre-telescopic period was taken from
* Morrison and Stephenson (2004). The overall tabulated range is
* -1000.0 through 2018.0. Values at intermediate times are interpolated
* from the tables.
*
* For dates earlier and later than the tabulated range, the program
* calculates a polynomial extrapolation formula.
*
* Updated deltaT predictions can be obtained from this network archive,
* http://maia.usno.navy.mil
* then appended to the dt[] table and update TABEND.
*
* Input is XEphem's MJD, output is ET-UT in seconds.
*
*
* References:
*
* Morrison, L. V., and F. R. Stephenson, Historical values of the Earth's
* clock error deltat T and the calculation of eclipses. Journal for the
* History of Astronomy 35, 327-336 (2004)
*
* Stephenson, F. R., and L. V. Morrison, "Long-term changes
* in the rotation of the Earth: 700 B.C. to A.D. 1980,"
* Philosophical Transactions of the Royal Society of London
* Series A 313, 47-70 (1984)
*
* Chapront-Touze, Michelle, and Jean Chapront, _Lunar Tables
* and Programs from 4000 B.C. to A.D. 8000_, Willmann-Bell 1991
*
* Stephenson, F. R., and M. A. Houlden, _Atlas of Historical
* Eclipse Maps_, Cambridge U. Press (1986)
*
*/
#include <math.h>
#include "astro.h"
#define TABSTART 1620
#define TABEND 2018
#define TABSIZ (TABEND - TABSTART + 1)
/* Morrison and Stephenson (2004)
* This table covers -1000 through 1700 in 100-year steps.
* Values are in whole seconds.
* Estimated standard error at -1000 is 640 seconds; at 1600, 20 seconds.
* The first value in the table has been adjusted 28 sec for
* continuity with their long-term quadratic extrapolation formula.
* The last value in this table agrees with the AA table at 1700,
* so there is no discontinuity at either endpoint.
*/
#define MS_SIZ 28
short m_s[MS_SIZ] = {
/* -1000 to -100 */
25428, 23700, 22000, 21000, 19040, 17190, 15530, 14080, 12790, 11640,
/* 0 to 900 */
10580, 9600, 8640, 7680, 6700, 5710, 4740, 3810, 2960, 2200,
/* 1000 to 1700 */
1570, 1090, 740, 490, 320, 200, 120, 9,
};
/* Entries prior to 1955 in the following table are from
* the 2020 Astronomical Almanac and assume ndot = -26.0.
* For dates prior to 1700, the above table is used instead of this one.
*/
short dt[TABSIZ] = {
/* 1620.0 thru 1659.0 */
12400, 11900, 11500, 11000, 10600, 10200, 9800, 9500, 9100, 8800,
8500, 8200, 7900, 7700, 7400, 7200, 7000, 6700, 6500, 6300,
6200, 6000, 5800, 5700, 5500, 5400, 5300, 5100, 5000, 4900,
4800, 4700, 4600, 4500, 4400, 4300, 4200, 4100, 4000, 3800,
/* 1660.0 thru 1699.0 */
3700, 3600, 3500, 3400, 3300, 3200, 3100, 3000, 2800, 2700,
2600, 2500, 2400, 2300, 2200, 2100, 2000, 1900, 1800, 1700,
1600, 1500, 1400, 1400, 1300, 1200, 1200, 1100, 1100, 1000,
1000, 1000, 900, 900, 900, 900, 900, 900, 900, 900,
/* 1700.0 thru 1739.0 */
900, 900, 900, 900, 900, 900, 900, 900, 1000, 1000,
1000, 1000, 1000, 1000, 1000, 1000, 1000, 1100, 1100, 1100,
1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100,
1100, 1100, 1100, 1100, 1200, 1200, 1200, 1200, 1200, 1200,
/* 1740.0 thru 1779.0 */
1200, 1200, 1200, 1200, 1300, 1300, 1300, 1300, 1300, 1300,
1300, 1400, 1400, 1400, 1400, 1400, 1400, 1400, 1500, 1500,
1500, 1500, 1500, 1500, 1500, 1600, 1600, 1600, 1600, 1600,
1600, 1600, 1600, 1600, 1600, 1700, 1700, 1700, 1700, 1700,
/* 1780.0 thru 1799.0 */
1700, 1700, 1700, 1700, 1700, 1700, 1700, 1700, 1700, 1700,
1700, 1700, 1600, 1600, 1600, 1600, 1500, 1500, 1400, 1400,
/* 1800.0 thru 1819.0 */
1370, 1340, 1310, 1290, 1270, 1260, 1250, 1250, 1250, 1250,
1250, 1250, 1250, 1250, 1250, 1250, 1250, 1240, 1230, 1220,
/* 1820.0 thru 1859.0 */
1200, 1170, 1140, 1110, 1060, 1020, 960, 910, 860, 800,
750, 700, 660, 630, 600, 580, 570, 560, 560, 560,
570, 580, 590, 610, 620, 630, 650, 660, 680, 690,
710, 720, 730, 740, 750, 760, 770, 770, 780, 780,
/* 1860.0 thru 1899.0 */
788, 782, 754, 697, 640, 602, 541, 410, 292, 182,
161, 10, -102, -128, -269, -324, -364, -454, -471, -511,
-540, -542, -520, -546, -546, -579, -563, -564, -580, -566,
-587, -601, -619, -664, -644, -647, -609, -576, -466, -374,
/* 1900.0 thru 1939.0 */
-272, -154, -2, 124, 264, 386, 537, 614, 775, 913,
1046, 1153, 1336, 1465, 1601, 1720, 1824, 1906, 2025, 2095,
2116, 2225, 2241, 2303, 2349, 2362, 2386, 2449, 2434, 2408,
2402, 2400, 2387, 2395, 2386, 2393, 2373, 2392, 2396, 2402,
/* 1940.0 thru 1979.0 */
2433, 2483, 2530, 2570, 2624, 2677, 2728, 2778, 2825, 2871,
2915, 2957, 2997, 3036, 3072, 3107, 3135, 3168, 3218, 3268,
3315, 3359, 3400, 3447, 3503, 3573, 3654, 3743, 3829, 3920,
4018, 4117, 4223, 4337, 4449, 4548, 4646, 4752, 4853, 4959,
/* 1980.0 thru 2018.0 */
5054, 5138, 5217, 5296, 5379, 5434, 5487, 5532, 5582, 5630,
5686, 5757, 5831, 5912, 5998, 6078, 6163, 6230, 6297, 6347,
6383, 6409, 6430, 6447, 6457, 6469, 6485, 6515, 6546, 6578,
6607, 6632, 6660, 6691, 6728, 6764, 6810, 6859, 6897,
};
/* Given MJD return DeltaT = ET - UT1 in seconds. Describes the irregularities
* of the Earth rotation rate in the ET time scale.
*/
double
deltat(double mj)
{
static double ans, lastmj;
double Y, p, B;
int d[6];
int i, iy, k;
if (mj == lastmj)
return (ans);
lastmj = mj;
mjd_year (mj, &Y);
if( Y > TABEND ) {
/* Extrapolate future values beyond the lookup table. */
if (Y > (TABEND + 100.0)) {
/* Morrison & Stephenson (2004) long-term curve fit. */
B = 0.01 * (Y - 1820.0);
ans = 32.0 * B * B - 20.0;
} else {
double a, b, c, d, m0, m1;
/* Cubic interpolation between last tabulated value
* and long-term curve evaluated at 100 years later.
*/
/* Last tabulated delta T value. */
a = 0.01 * dt[TABSIZ-1];
/* Approximate slope in past 10 years. */
b = 0.001 * (dt[TABSIZ-1] - dt[TABSIZ - 11]);
/* Long-term curve 100 years hence. */
B = 0.01 * (TABEND + 100.0 - 1820.0);
m0 = 32.0 * B*B - 20.0;
/* Its slope. */
m1 = 0.64 * B;
/* Solve for remaining coefficients of an interpolation polynomial
* that agrees in value and slope at both ends of the 100-year
* interval.
*/
d = 2.0e-6 * (50.0 * (m1 + b) - m0 + a);
c = 1.0e-4 * (m0 - a - 100.0 * b - 1.0e6 * d);
/* Note, the polynomial coefficients do not depend on Y.
* A given tabulation and long-term formula
* determine the polynomial.
* Thus, for the IERS table ending at 2011.0, the coefficients are
* a = 66.32
* b = 0.223
* c = 0.03231376
* d = -0.0001607784
*/
/* Compute polynomial value at desired time. */
p = Y - TABEND;
ans = a + p * (b + p * (c + p * d));
}
return (ans);
}
/* Use Morrison and Stephenson (2004) prior to the year 1700. */
if( Y < 1700.0 ) {
if (Y <= -1000.0) {
/* Morrison and Stephenson long-term fit. */
B = 0.01 * (Y - 1820.0);
ans = 32.0 * B * B - 20.0;
} else {
/* Morrison and Stephenson recommend linear interpolation
* between tabulations.
*/
iy = Y;
iy = (iy + 1000) / 100; /* Integer index into the table. */
B = -1000 + 100 * iy; /* Starting year of tabulated interval. */
p = m_s[iy];
ans = p + 0.01 * (Y - B) * (m_s[iy + 1] - p);
}
return (ans);
}
/* Besselian interpolation between tabulated values
* in the telescopic era.
* See AA page K11.
*/
/* Index into the table. */
p = floor(Y);
iy = (int) (p - TABSTART);
/* Zeroth order estimate is value at start of year */
ans = dt[iy];
k = iy + 1;
if( k >= TABSIZ )
goto done; /* No data, can't go on. */
/* The fraction of tabulation interval */
p = Y - p;
/* First order interpolated value */
ans += p*(dt[k] - dt[iy]);
if( (iy-1 < 0) || (iy+2 >= TABSIZ) )
goto done; /* can't do second differences */
/* Make table of first differences */
k = iy - 2;
for (i=0; i<5; i++) {
if( (k < 0) || (k+1 >= TABSIZ) )
d[i] = 0;
else
d[i] = dt[k+1] - dt[k];
k += 1;
}
/* Compute second differences */
for( i=0; i<4; i++ )
d[i] = d[i+1] - d[i];
B = 0.25*p*(p-1.0);
ans += B*(d[1] + d[2]);
if (iy+2 >= TABSIZ)
goto done;
/* Compute third differences */
for( i=0; i<3; i++ )
d[i] = d[i+1] - d[i];
B = 2.0*B/3.0;
ans += (p-0.5)*B*d[1];
if ((iy-2 < 0) || (iy+3 > TABSIZ) )
goto done;
/* Compute fourth differences */
for( i=0; i<2; i++ )
d[i] = d[i+1] - d[i];
B = 0.125*B*(p+1.0)*(p-2.0);
ans += B*(d[0] + d[1]);
done:
ans *= 0.01;
#if 0 /* ndot = -26.0 assumed; no correction. */
/* Astronomical Almanac table is corrected by adding the expression
* -0.000091 (ndot + 26)(year-1955)^2 seconds
* to entries prior to 1955 (AA page K8), where ndot is the secular
* tidal term in the mean motion of the Moon.
*
* Entries after 1955 are referred to atomic time standards and
* are not affected by errors in Lunar or planetary theory.
*/
if( Y < 1955.0 )
{
B = (Y - 1955.0);
#if 1
ans += -0.000091 * (-25.8 + 26.0) * B * B;
#else
ans += -0.000091 * (-23.8946 + 26.0) * B * B;
#endif
}
#endif /* 0 */
return( ans );
}
#ifdef TEST_MAIN
/* Exercise program.
*/
#include <stdio.h>
#include <stdlib.h>
int main(int ac, char *av[])
{
double ans, mj, y = atof(av[1]);
year_mjd (y, &mj);
ans = deltat(mj);
printf( "%.4lf\n", ans );
return (0);
}
#endif