XEphem/libastro/chap95.c

173 lines
4.7 KiB
C

/* heliocentric rectangular equatorial coordinates of Jupiter to Pluto;
* from Chapront's expansion of DE200/extension of DE200; mean equator J2000.0
*
* calculation time (milliseconds) on an HP 715/75, Jupiter to Pluto:
* (each coordinate component counted as 1 term,
* secular terms included for JD 2448908.5 = 1992 Oct 13.0)
*
* prec terms rates no rates
* 0.0 2256 5.1 4.6
*
* 1e-7 792 2.6 2.4 --> nominal precision rel. to DE200
* 1e-6 535 2.1 2.0
* 1e-5 350 1.8 1.6
* 1e-4 199 1.5 1.4
* 1e-3 96 1.2 1.1
*
* no drop 2256 4.5 3.9 (code without test criterion)
*/
#include <math.h>
#include "astro.h"
#include "chap95.h"
#define CHAP_MAXTPOW 2 /* NB: valid for all 5 outer planets */
/* chap95()
*
* input:
* m modified JD; days from J1900.0 = 2415020.0
*
* prec precision level, in radians.
* if (prec = 0.0), you get the full precision, namely
* a deviation of not more than 0.02 arc seconds (1e-7 rad)
* from the JPL DE200 integration, on which this expansion
* is based.
*
* obj object number as in astro.h (jupiter=3, saturn=4, ...)
*
* output:
* ret[6] cartesian components of position and velocity
*
* return:
* 0 Ok
* 1 time out of range [CHAP_BEGIN .. CHAP_END]
* 2 object out of range [JUPITER .. PLUTO]
* 3 precision out of range [0.0 .. 1e-3]
*/
int
chap95 (double m, int obj, double prec, double *ret)
{
static double a0[] = { /* semimajor axes for precision ctrl */
0.39, 0.72, 1.5, 5.2, 9.6, 19.2, 30.1, 39.5, 1.0
};
double sum[CHAP_MAXTPOW+1][6]; /* [T^0, ..][X,Y,Z,X',Y',Z'] */
double T, t; /* time in centuries and years */
double ca, sa, Nu; /* aux vars for terms */
double precT[CHAP_MAXTPOW+1]; /* T-augmented precision threshold */
chap95_rec *rec; /* term coeffs */
int cooidx;
/* check parameters */
if (m < CHAP_BEGIN || m > CHAP_END)
return (1);
if (obj < JUPITER || obj > PLUTO)
return (2);
if (prec < 0.0 || prec > 1e-3)
return (3);
/* init the sums */
zero_mem ((void *)sum, sizeof(sum));
T = (m - J2000)/36525.0; /* centuries since J2000.0 */
/* modify precision treshold for
* a) term storing scale
* b) convert radians to au
* c) account for skipped terms (more terms needed for better prec)
* threshold empirically established similar to VSOP; stern
* d) augment for secular terms
*/
precT[0] = prec * CHAP_SCALE /* a) */
* a0[obj] /* b) */
/ (10. * (-log10(prec + 1e-35) - 2)); /* c) */
t = 1./(fabs(T) + 1e-35); /* d) */
precT[1] = precT[0]*t;
precT[2] = precT[1]*t;
t = T * 100.0; /* YEARS since J2000.0 */
ca = sa = Nu = 0.; /* shut up compiler warning 'uninitialised' */
switch (obj) { /* set initial term record pointer */
case JUPITER: rec = chap95_jupiter; break;
case SATURN: rec = chap95_saturn; break;
case URANUS: rec = chap95_uranus; break;
case NEPTUNE: rec = chap95_neptune; break;
case PLUTO: rec = chap95_pluto; break;
default:
return (2); /* wrong object: severe internal trouble */
}
/* do the term summation into sum[T^n] slots */
for (; rec->n >= 0; ++rec) {
double *amp;
/* NOTE: The formula
* X = SUM[i=1,Records] T**n_i*(CX_i*cos(Nu_k*t)+SX_i*sin(Nu_k*t))
* could be rewritten as SUM( ... A sin (B + C*t) )
* "saving" trigonometric calls. However, e.g. for Pluto,
* there are only 65 distinct angles NU_k (130 trig calls).
* With that manipulation, EVERY arg_i would be different for X,
* Y and Z, which is 3*96 terms. Hence, the formulation as
* given is good (optimal?).
*/
for (cooidx = 0, amp = rec->amp; cooidx < 3; ++cooidx) {
double C, S, term, termdot;
short n; /* fast access */
C = *amp++;
S = *amp++;
n = rec->n;
/* drop term if too small
* this is quite expensive: 17% of loop time
*/
if (fabs(C) + fabs(S) < precT[n])
continue;
if (n == 0 && cooidx == 0) { /* new Nu only here */
double arg;
Nu = rec->Nu;
arg = Nu * t;
arg -= floor(arg/(2.*PI))*(2.*PI);
ca = cos(arg); /* blast it - even for Nu = 0.0 */
sa = sin(arg);
}
term = C * ca + S * sa;
sum[n][cooidx] += term;
#if CHAP_GETRATE
termdot = (-C * sa + S * ca) * Nu;
sum[n][cooidx+3] += termdot;
if (n > 0) sum[n - 1][cooidx+3] += n/100.0 * term;
#endif
} /* cooidx */
} /* records */
/* apply powers of time and sum up */
for (cooidx = 0; cooidx < 6; ++cooidx) {
ret[cooidx] = (sum[0][cooidx] +
T * (sum[1][cooidx] +
T * (sum[2][cooidx] )) )/CHAP_SCALE;
}
/* TEST: if the MAIN terms are dropped, get angular residue
ret[0] = sqrt(ret[0]*ret[0] + ret[1]*ret[1] + ret[2]*ret[2])/a0[obj];
*/
#if CHAP_GETRATE
for (cooidx = 3; cooidx < 6; ++cooidx) {
ret[cooidx] /= 365.25; /* yearly to daily rate */
}
#endif
return (0);
}