XEphem/libastro/misc.c

502 lines
11 KiB
C

/* misc handy functions.
* every system has such, no?
* 4/20/98 now_lst() always just returns apparent time
*/
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "astro.h"
/* zero from loc for len bytes */
void
zero_mem (void *loc, unsigned len)
{
(void) memset (loc, 0, len);
}
/* given min and max and an approximate number of divisions desired,
* fill in ticks[] with nicely spaced values and return how many.
* N.B. return value, and hence number of entries to ticks[], might be as
* much as 2 more than numdiv.
*/
int
tickmarks (double min, double max, int numdiv, double ticks[])
{
static int factor[] = { 1, 2, 5 };
double minscale;
double delta;
double lo;
double v;
int n;
minscale = fabs(max - min);
delta = minscale/numdiv;
for (n=0; n < (int)(sizeof(factor)/sizeof(factor[0])); n++) {
double scale;
double x = delta/factor[n];
if ((scale = (pow(10.0, ceil(log10(x)))*factor[n])) < minscale)
minscale = scale;
}
delta = minscale;
lo = floor(min/delta);
for (n = 0; (v = delta*(lo+n)) < max+delta; )
ticks[n++] = v;
return (n);
}
/* given an Obj *, return its type as a descriptive string.
* if it's of type fixed then return its class description.
* N.B. we return the address of static storage -- do not free or change.
*/
char *
obj_description (Obj *op)
{
typedef struct {
char classcode;
char *desc;
} CC;
#define NFCM ((int)(sizeof(fixed_class_map)/sizeof(fixed_class_map[0])))
static CC fixed_class_map[] = {
{'A', "Cluster of Galaxies"},
{'B', "Binary System"},
{'C', "Globular Cluster"},
{'D', "Double Star"},
{'F', "Diffuse Nebula"},
{'G', "Spiral Galaxy"},
{'H', "Spherical Galaxy"},
{'J', "Radio"},
{'K', "Dark Nebula"},
{'L', "Pulsar"},
{'M', "Multiple Star"},
{'N', "Bright Nebula"},
{'O', "Open Cluster"},
{'P', "Planetary Nebula"},
{'Q', "Quasar"},
{'R', "Supernova Remnant"},
{'S', "Star"},
{'T', "Star-like Object"},
{'U', "Cluster, with nebulosity"},
{'V', "Variable Star"},
{'Y', "Supernova"},
};
#define NBCM ((int)(sizeof(binary_class_map)/sizeof(binary_class_map[0])))
static CC binary_class_map[] = {
{'a', "Astrometric binary"},
{'c', "Cataclysmic variable"},
{'e', "Eclipsing binary"},
{'x', "High-mass X-ray binary"},
{'y', "Low-mass X-ray binary"},
{'o', "Occultation binary"},
{'s', "Spectroscopic binary"},
{'t', "1-line spectral binary"},
{'u', "2-line spectral binary"},
{'v', "Spectrum binary"},
{'b', "Visual binary"},
{'d', "Visual binary, apparent"},
{'q', "Visual binary, optical"},
{'r', "Visual binary, physical"},
{'p', "Exoplanet"},
};
switch (op->o_type) {
case FIXED:
if (op->f_class) {
int i;
for (i = 0; i < NFCM; i++)
if (fixed_class_map[i].classcode == op->f_class)
return (fixed_class_map[i].desc);
}
return ("Fixed");
case PARABOLIC:
return ("Solar - Parabolic");
case HYPERBOLIC:
return ("Solar - Hyperbolic");
case ELLIPTICAL:
return ("Solar - Elliptical");
case BINARYSTAR:
if (op->f_class) {
int i;
for (i = 0; i < NBCM; i++)
if (binary_class_map[i].classcode == op->f_class)
return (binary_class_map[i].desc);
}
return ("Binary system");
case PLANET: {
static char nsstr[16];
static Obj *biop;
if (op->pl_code == SUN)
return ("Star");
if (op->pl_code == MOON)
return ("Moon of Earth");
if (op->pl_moon == X_PLANET)
return ("Planet");
if (!biop)
getBuiltInObjs (&biop);
sprintf (nsstr, "Moon of %s", biop[op->pl_code].o_name);
return (nsstr);
}
case EARTHSAT:
return ("Earth Sat");
default:
printf ("obj_description: unknown type: 0x%x\n", op->o_type);
abort();
return (NULL); /* for lint */
}
}
/* given a Now *, find the local apparent sidereal time, in hours.
*/
void
now_lst (Now *np, double *lstp)
{
static double last_mjd = -23243, last_lng = 121212, last_lst;
double eps, lst, deps, dpsi;
if (last_mjd == mjd && last_lng == lng) {
*lstp = last_lst;
return;
}
utc_gst (mjd_day(mjd), mjd_hr(mjd), &lst);
lst += radhr(lng);
obliquity(mjd, &eps);
nutation(mjd, &deps, &dpsi);
lst += radhr(dpsi*cos(eps+deps));
range (&lst, 24.0);
last_mjd = mjd;
last_lng = lng;
*lstp = last_lst = lst;
}
/* convert ra to ha, in range 0..2*PI
* need dec too if not already apparent.
*/
void
radec2ha (Now *np, double ra, double dec, double *hap)
{
double ha, lst;
if (epoch != EOD)
as_ap (np, epoch, &ra, &dec);
now_lst (np, &lst);
ha = hrrad(lst) - ra;
if (ha < 0)
ha += 2*PI;
*hap = ha;
}
/* find Greenwich Hour Angle of the given object at the given time, 0..2*PI.
*/
void
gha (Now *np, Obj *op, double *ghap)
{
Now n = *np;
Obj o = *op;
double tmp;
n.n_epoch = EOD;
n.n_lng = 0.0;
n.n_lat = 0.0;
obj_cir (&n, &o);
now_lst (&n, &tmp);
tmp = hrrad(tmp) - o.s_ra;
if (tmp < 0)
tmp += 2*PI;
*ghap = tmp;
}
/* given a circle and a line segment, find a segment of the line inside the
* circle.
* return 0 and the segment end points if one exists, else -1.
* We use a parametric representation of the line:
* x = x1 + (x2-x1)*t and y = y1 + (y2-y1)*t, 0 < t < 1
* and a centered representation of the circle:
* (x - xc)**2 + (y - yc)**2 = r**2
* and solve for the t's that work, checking for usual conditions.
*/
int
lc (
int cx, int cy, int cw, /* circle bbox corner and width */
int x1, int y1, int x2, int y2, /* line segment endpoints */
int *sx1, int *sy1, int *sx2, int *sy2) /* segment inside the circle */
{
int dx = x2 - x1;
int dy = y2 - y1;
int r = cw/2;
int xc = cx + r;
int yc = cy + r;
int A = x1 - xc;
int B = y1 - yc;
double a = dx*dx + dy*dy; /* O(2 * 2**16 * 2**16) */
double b = 2*(dx*A + dy*B); /* O(4 * 2**16 * 2**16) */
double c = A*A + B*B - r*r; /* O(2 * 2**16 * 2**16) */
double d = b*b - 4*a*c; /* O(2**32 * 2**32) */
double sqrtd;
double t1, t2;
if (d <= 0)
return (-1); /* containing line is purely outside circle */
sqrtd = sqrt(d);
t1 = (-b - sqrtd)/(2.0*a);
t2 = (-b + sqrtd)/(2.0*a);
if (t1 >= 1.0 || t2 <= 0.0)
return (-1); /* segment is purely outside circle */
/* we know now that some part of the segment is inside,
* ie, t1 < 1 && t2 > 0
*/
if (t1 <= 0.0) {
/* (x1,y1) is inside circle */
*sx1 = x1;
*sy1 = y1;
} else {
*sx1 = (int)(x1 + dx*t1);
*sy1 = (int)(y1 + dy*t1);
}
if (t2 >= 1.0) {
/* (x2,y2) is inside circle */
*sx2 = x2;
*sy2 = y2;
} else {
*sx2 = (int)(x1 + dx*t2);
*sy2 = (int)(y1 + dy*t2);
}
return (0);
}
/* compute visual magnitude using the H/G parameters used in the Astro Almanac.
* these are commonly used for asteroids.
*/
void
hg_mag (
double h, double g,
double rp, /* sun-obj dist, AU */
double rho, /* earth-obj dist, AU */
double rsn, /* sun-earth dist, AU */
double *mp)
{
double psi_t, Psi_1, Psi_2, beta;
double c;
double tb2;
c = (rp*rp + rho*rho - rsn*rsn)/(2*rp*rho);
if (c <= -1)
beta = PI;
else if (c >= 1)
beta = 0;
else
beta = acos(c);;
tb2 = tan(beta/2.0);
/* psi_t = exp(log(tan(beta/2.0))*0.63); */
psi_t = pow (tb2, 0.63);
Psi_1 = exp(-3.33*psi_t);
/* psi_t = exp(log(tan(beta/2.0))*1.22); */
psi_t = pow (tb2, 1.22);
Psi_2 = exp(-1.87*psi_t);
*mp = h + 5.0*log10(rp*rho);
if (Psi_1 || Psi_2) *mp -= 2.5*log10((1-g)*Psi_1 + g*Psi_2);
}
/* given faintest desired mag, mag step magstp, image scale and object
* magnitude and size, return diameter to draw object, in pixels, or 0 if
* dimmer than fmag.
*/
int
magdiam (
int fmag, /* faintest mag */
int magstp, /* mag range per dot size */
double scale, /* rads per pixel */
double mag, /* magnitude */
double size) /* rads, or 0 */
{
int diam, sized;
if (mag > fmag)
return (0);
diam = (int)((fmag - mag)/magstp + 1);
sized = (int)(size/scale + 0.5);
if (sized > diam)
diam = sized;
return (diam);
}
/* computer visual magnitude using the g/k parameters commonly used for comets.
*/
void
gk_mag (
double g, double k,
double rp, /* sun-obj dist, AU */
double rho, /* earth-obj dist, AU */
double *mp)
{
*mp = g + 5.0*log10(rho) + 2.5*k*log10(rp);
}
/* given a string convert to floating point and return it as a double.
* this is to isolate possible unportabilities associated with declaring atof().
* it's worth it because atof() is often some 50% faster than sscanf ("%lf");
*/
double
atod (char *buf)
{
return (strtod (buf, NULL));
}
/* solve a spherical triangle:
* A
* / \
* / \
* c / \ b
* / \
* / \
* B ____________ C
* a
*
* given A, b, c find B and a in range 0..B..2PI and 0..a..PI, respectively..
* cap and Bp may be NULL if not interested in either one.
* N.B. we pass in cos(c) and sin(c) because in many problems one of the sides
* remains constant for many values of A and b.
*/
void
solve_sphere (double A, double b, double cc, double sc, double *cap, double *Bp)
{
double cb = cos(b), sb = sin(b);
double sA, cA = cos(A);
double x, y;
double ca;
double B;
ca = cb*cc + sb*sc*cA;
if (ca > 1.0) ca = 1.0;
if (ca < -1.0) ca = -1.0;
if (cap)
*cap = ca;
if (!Bp)
return;
if (sc < 1e-7)
B = cc < 0 ? A : PI-A;
else {
sA = sin(A);
y = sA*sb*sc;
x = cb - ca*cc;
B = y ? (x ? atan2(y,x) : (y>0 ? PI/2 : -PI/2)) : (x>=0 ? 0 : PI);
}
*Bp = B;
range (Bp, 2*PI);
}
/* #define WANT_MATHERR if your system supports it. it gives SGI fits.
*/
#undef WANT_MATHERR
#if defined(WANT_MATHERR)
/* attempt to do *something* reasonable when a math function blows.
*/
matherr (xp)
struct exception *xp;
{
static char *names[8] = {
"acos", "asin", "atan2", "pow",
"exp", "log", "log10", "sqrt"
};
int i;
/* catch-all */
xp->retval = 0.0;
for (i = 0; i < sizeof(names)/sizeof(names[0]); i++)
if (strcmp (xp->name, names[i]) == 0)
switch (i) {
case 0: /* acos */
xp->retval = xp->arg1 >= 1.0 ? 0.0 : -PI;
break;
case 1: /* asin */
xp->retval = xp->arg1 >= 1.0 ? PI/2 : -PI/2;
break;
case 2: /* atan2 */
if (xp->arg1 == 0.0)
xp->retval = xp->arg2 < 0.0 ? PI : 0.0;
else if (xp->arg2 == 0.0)
xp->retval = xp->arg1 < 0.0 ? -PI/2 : PI/2;
else
xp->retval = 0.0;
break;
case 3: /* pow */
/* FALLTHRU */
case 4: /* exp */
xp->retval = xp->o_type == OVERFLOW ? 1e308 : 0.0;
break;
case 5: /* log */
/* FALLTHRU */
case 6: /* log10 */
xp->retval = xp->arg1 <= 0.0 ? -1e308 : 0;
break;
case 7: /* sqrt */
xp->retval = 0.0;
break;
}
return (1); /* suppress default error handling */
}
#endif
/* given the difference in two RA's, in rads, return their difference,
* accounting for wrap at 2*PI. caller need *not* first force it into the
* range 0..2*PI.
*/
double
delra (double dra)
{
double fdra = fmod(fabs(dra), 2*PI);
if (fdra > PI)
fdra = 2*PI - fdra;
return (fdra);
}
/* return 1 if object is considered to be "deep sky", else 0.
* The only things deep-sky are fixed objects other than stars.
*/
int
is_deepsky (Obj *op)
{
int deepsky = 0;
if (is_type(op, FIXEDM)) {
switch (op->f_class) {
case 'T':
case 'B':
case 'D':
case 'M':
case 'S':
case 'V':
break;
default:
deepsky = 1;
break;
}
}
return (deepsky);
}