Added support for getting the real controller info, as well as the function SDL_GetGamepadSteamHandle() to get the Steam Input API handle, from the virtual gamepads provided by Steam.
Also added an event SDL_EVENT_GAMEPAD_STEAM_HANDLE_UPDATED which is triggered when a controller's API handle changes, e.g. the controllers were reassigned slots in the Steam UI.
SDL window size, state, and position functions have been considered immediate, with their effects assuming to have taken effect upon successful return of the function. However, several windowing systems handle these requests asynchronously, resulting in the functions blocking until the changes have taken effect, potentially for long periods of time. Additionally, some windowing systems treat these as requests, and can potentially deny or fulfill the request in a manner differently than the application expects, such as not allowing a window to be positioned or sized beyond desktop borders, prohibiting fullscreen, and so on.
With these changes, applications can make requests of the window manager that do not block, with the understanding that an associated event will be sent if the request is fulfilled. Currently, size, position, maximize, minimize, and fullscreen calls are handled as asynchronous requests, with events being returned if the request is honored. If the application requires that the change take effect immediately, it can call the new SDL_SyncWindow function, which will attempt to block until the request is fulfilled, or some arbitrary timeout period elapses, the duration of which depends not only on the windowing system, but on the operation requested as well (e.g. a 100ms timeout is fine for most X11 events, but maximizing a window can take considerably longer for some reason). There is also a new hint 'SDL_VIDEO_SYNC_ALL_WINDOW_OPS' that will mimic the old behavior by synchronizing after every window operation with, again, the understanding that using this may result in the associated calls blocking for a relatively long period.
The deferred model also results in the window size and position getters not reporting false coordinates anymore, as they only forward what the window manager reports vs allowing applications to set arbitrary values, and fullscreen enter/leave events that were initiated via the window manager update the window state appropriately, where they didn't before.
Care was taken to ensure that order of operations is maintained, and that requests are not ignored or dropped. This does require some implicit internal synchronization in the various backends if many requests are made in a short period, as some state and behavior depends on other bits of state that need to be known at that particular point in time, but this isn't something that typical applications will hit, unless they are sending a lot of window state in a short time as the tests do.
The automated tests developed to test the previous behavior also resulted in previously undefined behavior being defined and normalized across platforms, particularly when it comes to the sizing and positioning of windows when they are in a fixed-size state, such as maximized or fullscreen. Size and position requests made when the window is not in a movable or resizable state will be deferred until it can be applied, so no requests are lost. These changes fix another long-standing issue with renderers recreating maximized windows, where the original non-maximized size was lost, resulting in the window being restored to the wrong size. All automated video tests pass across all platforms.
Overall, the "make a request/get an event" model better reflects how most windowing systems work, and some backends avoid spending significant time blocking while waiting for operations to complete.
Now it returns an array and optional count, to match other SDL3 APIs.
SDL_GetTouchName() was replaced with a function that takes an instance ID
instead of an index, too.
This uses the same `SDL_VerbNoun` format as the rest of SDL3, and also
adds stronger effort to invalidate cached state in the backend, so cooperation
improves with apps that are using lowlevel rendering APIs directly.
Fixes#367.
This patch adds an API for querying pressure-
sensitive pens, cf. SDL_pen.h:
- Enumerate all pens
- Get pen capabilities, names, GUIDs
- Distinguishes pens and erasers
- Distinguish attached and detached pens
- Pressure and tilt support
- Rotation, distance, throttle wheel support
(throttle wheel untested)
- Pen type and meta-information reporting
(partially tested)
Pen event reporting:
- Three new event structures: PenTip, PenMotion, and
PenButton
- Report location with sub-pixel precision
- Include axis and button status, is-eraser flag
Internal pen tracker, intended to be independent
of platform APIs, cf. SDL_pen_c.h:
- Track known pens
- Handle pen hotplugging
Automatic test:
- testautomation_pen.c
Other features:
- XInput2 implementation, incl. hotplugging
- Wayland implementation, incl. hotplugging
- Backward compatibility: pen events default to
emulating pens with mouse ID SDL_PEN_MOUSEID
- Can be toggled via SDL_HINT_PEN_NOT_MOUSE
- Test/demo program (testpen)
- Wacom pen feature identification by pen ID
Acknowledgements:
- Ping Cheng (Wacom) provided extensive feedback
on Wacom pen features and detection so that
hopefully untested Wacom devices have a
realistic chance of working out of the box.
This gives applications and binding systems a clearer view of what the hardware is so they can make intelligent decisions about how to present things to the user.
Gamepad mappings continue to use abxy for the face buttons for simplicity and compatibility with earlier versions of SDL, however the "SDL_GAMECONTROLLER_USE_BUTTON_LABELS" hint no longer has any effect.
Fixes https://github.com/libsdl-org/SDL/issues/6117
This lets apps optionally have a handful of callbacks for their entry points instead of a single main function. If used, the actual main/SDL_main/whatever entry point will be implemented in the single-header library SDL_main.h and the app will implement four separate functions:
First:
int SDL_AppInit(int argc, char **argv);
This will be called once before anything else. argc/argv work like they always do. If this returns 0, the app runs. If it returns < 0, the app calls SDL_AppQuit and terminates with an exit code that reports an error to the platform. If it returns > 0, the app calls SDL_AppQuit and terminates with an exit code that reports success to the platform. This function should not go into an infinite mainloop; it should do any one-time startup it requires and then return.
Then:
int SDL_AppIterate(void);
This is called over and over, possibly at the refresh rate of the display or some other metric that the platform dictates. This is where the heart of your app runs. It should return as quickly as reasonably possible, but it's not a "run one memcpy and that's all the time you have" sort of thing. The app should do any game updates, and render a frame of video. If it returns < 0, SDL will call SDL_AppQuit and terminate the process with an exit code that reports an error to the platform. If it returns > 0, the app calls SDL_AppQuit and terminates with an exit code that reports success to the platform. If it returns 0, then SDL_AppIterate will be called again at some regular frequency. The platform may choose to run this more or less (perhaps less in the background, etc), or it might just call this function in a loop as fast as possible. You do not check the event queue in this function (SDL_AppEvent exists for that).
Next:
int SDL_AppEvent(const SDL_Event *event);
This will be called once for each event pushed into the SDL queue. This may be called from any thread, and possibly in parallel to SDL_AppIterate. The fields in event do not need to be free'd (as you would normally need to do for SDL_EVENT_DROP_FILE, etc), and your app should not call SDL_PollEvent, SDL_PumpEvent, etc, as SDL will manage this for you. Return values are the same as from SDL_AppIterate(), so you can terminate in response to SDL_EVENT_QUIT, etc.
Finally:
void SDL_AppQuit(void);
This is called once before terminating the app--assuming the app isn't being forcibly killed or crashed--as a last chance to clean up. After this returns, SDL will call SDL_Quit so the app doesn't have to (but it's safe for the app to call it, too). Process termination proceeds as if the app returned normally from main(), so atexit handles will run, if your platform supports that.
The app does not implement SDL_main if using this. To turn this on, define SDL_MAIN_USE_CALLBACKS before including SDL_main.h. Defines like SDL_MAIN_HANDLED and SDL_MAIN_NOIMPL are also respected for callbacks, if the app wants to do some sort of magic main implementation thing.
In theory, on most platforms these can be implemented in the app itself, but this saves some #ifdefs in the app and lets everyone struggle less against some platforms, and might be more efficient in the long run, too.
On some platforms, it's possible this is the only reasonable way to go, but we haven't actually hit one that 100% requires it yet (but we will, if we want to write a RetroArch backend, for example).
Using the callback entry points works on every platform, because on platforms that don't require them, we can fake them with a simple loop in an internal implementation of the usual SDL_main.
The primary way we expect people to write SDL apps is with SDL_main, and this is not intended to replace it. If the app chooses to use this, it just removes some platform-specific details they might have to otherwise manage, and maybe removes a barrier to entry on some future platform.
Fixes#6785.
Reference PR #8247.
The following objects now have properties that can be user modified:
* SDL_AudioStream
* SDL_Gamepad
* SDL_Joystick
* SDL_RWops
* SDL_Renderer
* SDL_Sensor
* SDL_Surface
* SDL_Texture
* SDL_Window
Also switched the D3D11 and D3D12 renderers to use real NV12 textures for NV12 data.
The combination of these two changes allows us to implement 0-copy video decode and playback for D3D11 in testffmpeg without any access to the renderer internals.
You can see it in action in testaudio by mousing over a logical device; it
will show a visualizer for the current PCM (whatever is currently being
recorded on a capture device, or whatever is being mixed for output on
playback devices).
Fixes#8122.
This is meant to offer a simplified API for people that are either migrating
directly from SDL2 with minimal effort or just want to make noise without
any of the fancy new API features.
Users of this API can just deal with a single SDL_AudioStream as their only
object/handle into the audio subsystem.
They are still allowed to open multiple devices (or open the same device
multiple times), but cannot change stream bindings on logical devices opened
through this function.
Destroying the single audio stream will also close the logical device behind
the scenes.
The current status is stored in the SDL_rwops 'status' field to be able to determine whether a 0 return value is caused by end of file, an error, or a non-blocking source not being ready.
The functions to read sized datatypes now return SDL_bool so you can detect read errors.
Fixes https://github.com/libsdl-org/SDL/issues/6729
Add SDL_ShowWindowSystemMenu() to display the system-level menu for windows. Typically, this is done by right-clicking on the system provided window decorations, however, if an application is rendering its own client-side decorations, there is currently no way to display it. This menu is provided by the system and can provide privileged desktop functionality such as moving or pinning a window to a specific workspace or display, setting the always-on-top property, or taking screenshots. In many cases, there are no APIs which allow applications to perform these actions manually.
Implemented for Wayland via functionality provided by the xdg_toplevel protocol, Win32 via the undocumented message 0x313 (typically called WM_POPUPSYSTEMMENU), and X11 via the "_GTK_SHOW_WINDOW_MENU" atom (supported in GNOME and KDE).
This rips up the entire SDL audio subsystem! While we still feed the audio device from a separate thread, the audio callback into the app is now gone a totally optional alternative.
Now the app will bind an SDL_AudioStream to a given device and feed data to it. As many streams as one likes can be bound to a device; SDL will mix them all into a single buffer and feed the device from there.
So not only does this function as a basic mixer, it also means that multiple device opens are handled seamlessly (so if you want to open the device for your game, but you also link to a library that provides VoIP and it wants to open the device separately, you don't have to worry about stepping on each other, or that the OS will fail to allow multiple opens of the same device, etc).
Merged from pull request #7704.
Fixes#7379.
Reference Issue #6889.
Reference Issue #6632.
Now you open an audio device and attach streams, as planned, but each
open generates a new logical device. Each logical device has its own
streams that are managed as a group, but all streams on all logical
devices are mixed into a single buffer for a single OS-level open of
the physical device.
This allows multiple opens of a device that won't interfere with each
other and also clean up just what the opener assigned to their logical
device, so all their streams will go away on close but other opens will
continue to mix as they were.
More or less, this makes things work as expected at the app level, but
also gives them the power to group audio streams, and (once added) pause
them all at once, etc.
Also renamed most cases of SDL_GAMEPAD_TYPE_UNKNOWN to SDL_GAMEPAD_TYPE_STANDARD, and SDL_GetGamepadType() will return SDL_GAMEPAD_TYPE_UNKNOWN only if the gamepad is invalid.
Also renamed SDL_GetDisplayOrientation() SDL_GetDisplayCurrentOrientation()
The natural orientation of the primary display is the frame of reference for accelerometer and gyro sensor readings.
We have gotten feedback that abstracting the coordinate system based on the display scale is unexpected and it is difficult to adapt existing applications to the proposed API.
The new approach is to provide the coordinate systems that people expect, but provide additional information that will help applications properly handle high DPI situations.
The concepts needed for high DPI support are documented in README-highdpi.md. An example of automatically adapting the content to display scale changes can be found in SDL_test_common.c, where auto_scale_content is checked.
Also, the SDL_WINDOW_ALLOW_HIGHDPI window flag has been replaced by the SDL_HINT_VIDEO_ENABLE_HIGH_PIXEL_DENSITY hint.
Fixes https://github.com/libsdl-org/SDL/issues/7709
Re-writes the clipboard data handling in wayland to an on demand
solution where callbacks are provided to generate/provide the clipboard
data when requested by the OS.
- SDL_AudioCVT is gone, even internally.
- libsamplerate is gone (I suspect our resampler is finally Good Enough).
- Cleanups and improvements to audio conversion interfaces.
- SDL_AudioStream can change its input/output format/rate/channels on the fly!
It turns out there's a race condition on X11 where the window could be placed by the window manager while being placed by the application, so we need to have the initial position available at window creation.
Add the CreatePopupWindow function to allow the creation of child tooltip and menu popup windows. Popup windows must be created as either a tooltip or popup menu and cannot be minimized, maximized, made fullscreen, or grab the mouse.
Child popup windows are tracked and will be recursively hidden, shown, or destroyed in tandem with the parent window.
This function wasn't consistently correct across platforms and devices.
If you want the UI scale factor, you can use display_scale in the structure returned by SDL_GetDesktopDisplayMode(). If you need an approximate DPI, you can multiply this value times 160 on iPhone and Android, and 96 on other platforms.
This fixes rounding errors with coordinate scaling and gives more flexibility in the presentation, as well as making it easy to maintain device independent resolution as windows move between different pixel density displays.
By default when a renderer is created, it will match the window size so window coordinates and render coordinates are 1-1.
Mouse and touch events are no longer filtered to change their coordinates, instead you can call SDL_ConvertEventToRenderCoordinates() to explicitly map event coordinates into the rendering viewport.
SDL_RenderWindowToLogical() and SDL_RenderLogicalToWindow() have been renamed SDL_RenderCoordinatesFromWindow() and SDL_RenderCoordinatesToWindow() and take floating point coordinates in both directions.
The viewport, clipping state, and scale for render targets are now persistent and will remain set whenever they are active.
Rather than iterating over display modes using an index, there is a new function SDL_GetFullscreenDisplayModes() to get the list of available fullscreen modes on a display.
{
SDL_DisplayID display = SDL_GetPrimaryDisplay();
int num_modes = 0;
SDL_DisplayMode **modes = SDL_GetFullscreenDisplayModes(display, &num_modes);
if (modes) {
for (i = 0; i < num_modes; ++i) {
SDL_DisplayMode *mode = modes[i];
SDL_Log("Display %" SDL_PRIu32 " mode %d: %dx%d@%gHz, %d%% scale\n",
display, i, mode->pixel_w, mode->pixel_h, mode->refresh_rate, (int)(mode->display_scale * 100.0f));
}
SDL_free(modes);
}
}
SDL_GetDesktopDisplayMode() and SDL_GetCurrentDisplayMode() return pointers to display modes rather than filling in application memory.
Windows now have an explicit fullscreen mode that is set, using SDL_SetWindowFullscreenMode(). The fullscreen mode for a window can be queried with SDL_GetWindowFullscreenMode(), which returns a pointer to the mode, or NULL if the window will be fullscreen desktop. SDL_SetWindowFullscreen() just takes a boolean value, setting the correct fullscreen state based on the selected mode.
This simplifies the API and removes a level of API translation between the int variants of the functions and the float implementation
Fixes https://github.com/libsdl-org/SDL/issues/6656
Also cleaned up logic for whether we need to poll for events:
- We need to periodically poll for joysticks to handle hotplug.
- We need to frequently poll for joysticks and sensors when they're open so their state can be updated
This function is useful for accumulating relative mouse motion if you want to only handle whole pixel movement.
e.g.
static float dx_frac, dy_frac;
float dx, dy;
/* Accumulate new motion with previous sub-pixel motion */
dx = event.motion.xrel + dx_frac;
dy = event.motion.yrel + dy_frac;
/* Split the integral and fractional motion, dx and dy will contain whole pixel deltas */
dx_frac = SDL_modff(dx, &dx);
dy_frac = SDL_modff(dy, &dy);
if (dx != 0.0f || dy != 0.0f) {
...
}
Feedback from @icculus:
"IsTablet" uses "is" as a form of "to be" ...like, the actual question is of its nature.
The rest is just a superfluous word in the question and it flows as better English with if (RectEmpty) than if (IsRectEmpty)
Fixes https://github.com/libsdl-org/SDL/issues/6932
`SDL_QUERY`, `SDL_IGNORE`, `SDL_ENABLE`, and `SDL_DISABLE` have been removed.
SDL_EventState() has been replaced with SDL_SetEventEnabled()
SDL_GetEventState() has been replaced with SDL_EventEnabled()
SDL_GameControllerEventState has been replaced with SDL_SetGamepadEventsEnabled() and SDL_GamepadEventsEnabled()
SDL_JoystickEventState has been replaced with SDL_SetJoystickEventsEnabled() and SDL_JoystickEventsEnabled()
SDL_ShowCursor() has been split into three functions: SDL_ShowCursor(), SDL_HideCursor(), and SDL_CursorVisible()
Fixes https://github.com/libsdl-org/SDL/issues/6929
Instead of indexing into an internal list of devices which requires locking, we return a list of device IDs which can then be queried individually.
Reference: https://github.com/libsdl-org/SDL/issues/6889
makes the SDL_main code shorter
Also added a generic SDL_RunApp() implementation for platforms that
don't really need it.
Some platforms (that use SDL_main but haven't been ported yet) are
still missing, but are added in the following commits.
and move the #undef main and #define main SDL_main to the start/end of
SDL_main_impl.h instead of repeating it in every platform implementation
Thanks to SDL_N3DSRunApp we don't need the #include <3ds.h> in
SDL_main_impl.h - that caused conflicts with testthread.c, because both
have (different) ThreadFunc typedefs.
(remaining platforms will follow)
SDL_main.h is *not* included by SDL.h anymore, users are supposed to
include it directly now, usually only in the file they implement main() in.
If they need the header elsewhere or don't want SDL_main to implement
main() (but only call SDL_SetMainReady() or whatever), they
can #define SDL_MAIN_HANDLED first, same as before.
For SDL-internal usage, I added _SDL_MAIN_NOIMPL, which *also* skips the
implementation and `#define main SDL_main`, but still defines
SDL_MAIN_AVAILABLE and SDL_MAIN_NEEDED in SDL_main.h, as before.
To make the implementaion in the header shorter and avoid including windows.h,
I moved most of the Win32 SDL_main code into SDL3.dll via SDL_Win32RunApp(),
so the header-only part is just the different main functions calling
SDL_Win32RunApp(SDL_main, NULL)
Note that I changed changed the return value and type of OutOfMemory()
to return -1 instead of FALSE, so main() (or WinMain() or whatever)
returns -1 instead of 0 in case of an out-of-memory error
Compared to original Win32 SDL_main, I tweaked the part of the
implementation in SDL_main_impl.h a bit to avoid linker warnings
and conflicts with stuff from windows.h:
- replaced windows.h with own define of WINAPI
and typedef-ing HINSTANCE and LPSTR.
This prevents conflicts between all the generically-named #defines and
types in windows.h and user code (like DrawState in some SDL tests)
- only using one of main() or wmain() gets rid of a MSVC linker error
("warning LNK4067: ambiguous entry point")
If this still causes problems, we might try getting rid of wmain(),
seemed to me like MSVC can use regular main() in UNICODE mode as well
- simplified the UNICODE logic for that - while this is not exactly
equivalent to the old, it should make sense and Works For Me
If you care about timestamps you'll also want to catch all of the sensor events instead of just polling the current state. For example, Nintendo Switch controllers generate 3 sensor events with distinct values for each polling interval.